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Motivation for CO, as a Working Fluid

High Efficiency Smaller Turbomachinery
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Renewed interest due to enabling advances in:
* Materials (USC, AUSC programs)
* Dry Gas Seals (more experience in CO, and LNG compressors)

e Compact Heat Exchangers
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Work on sCO2 p

Feher 1967

1. Feher, E. G., '"The Supercritical Thermodynamic Power Cycle,"
Douglas Paper No. 4348, presented to the Intersociety Energy
Conversion Engineering Conference, Miami Beach, Florida
13-17 Aug. 1967.
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sCO2 Application Space
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Basic Components in a Simple Recuprated Cycle

P2 CO, P-h Diagram
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What'’s Special about CO,? @’

T-s Diagram for CO2 with
typical high temperature
recompression cycle

Note ambient temperature
is near the critical point

Pink lines are constant
enthalpy — horizontal
indicates h=Cp*T is valid




What'’s Special about CO,?
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Close up of low T region

Constant enthalpy lines far
from horizontal
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Quiz

* Statepoint 1 is at 82.4 bara and 34.2 C
* Statepoint 2 is at 75.0 baraand 32.0C

SOUTHWEST RESEARCH INSTITUTE

Which has a higher enthalpy?



Quiz

* Statepoint 1 is at 82.4 baraand 34.2 C _ .
?
* Statepoint 2 is at 75.0 bara and 32.0 C Which has a higher enthalpy:
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Common CO, Equations of State

60

50

40

30

Density [Ibm/ft3]

20

Variation in Predicted Density of CO2 at 68F

Large variation in
predicted density for
supercritical CO,
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T

Carnot vs Lorenz

Carnot — Infinite Heat Reservoir

Cp(Tsrce - Tstck)

Image from Hofer & Gulen Efficiency Entitlement for Bottoming Cycles GT2006-91213
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Applications and Architetures
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High Temperature Cycles




sCO, Recompression Cycle
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High Temperature Cycles — Thermodynamic Benefit
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High Temperature Cycles — Flow Differences @’

Specific Heat Input
CO, =307 ki/kg
------ H,0 = 3040 kJ/kg

CO, mass circulation ~¥10X H,0

xxxxxxxxxxxxxxx

CO, Requires Larger Pipes for

Hot Flows

CO, HP Inlet Volume Flow ~12X H,O
CO, IP Inlet Volume Flow ~4.6X H,O

CO, Turbine Exit Vol Flow ~0.03X H,0 -> CO, Turbines much smaller

Image Courtesy of GE
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Waste Heat Recovery — Thermodynamic Benefit

Temperature

CO2 Single Phase heat
transfer better matches GT

exhaust
- Lower HRSG losses

2PNRH Steam

v

Heat Transferred

Fundamentally different benefit vs High Temperature cycles
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Cascaded CO, Bottoming Cycle

Cascaded cycle uses two sCO, loops
to maximize performance

W CO, circulates in two closed loop
cycles — only small make-up for shaft

seal leakages

. Small equipment size enables BC to
@ Turbine approach aeroderivative transient
performance

Water Image Courtesy of GE
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Impact of Ambient Temperature
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, condensation,

and pumping to minimize compression work

Must balance refrigeration / cooling
requirements against compression

Utilizes partial compression
requirements

Transcritical cycle

Condensing Cycles
CO, P-h Diagram
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Allam (Direct Oxy-Fuel) Cycles

Direct Fired
O, Oxy-Combustor

Direct fire oxy-fuel combustion

CO, from CO, + Water
changes the cycle to a semi- Recuperator
open cycle ruel —
Mass balance issues
CO2 + combustion products Cosler
Water Rewgperater

Clean up and water removal remova™ ]

J Thermal

Input

v Pump
Excess CO2 Turbine
Removal
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sCO, Heat Pumps for Industrial Heat and ETES
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