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Direct-fired Oxy Combustion 
in sCO2 Power Cycles
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Direct vs Indirect-Fired sCO2 Cycle

https://www.energy.gov/sco2-power-cycles/sco2-power-cycles-fossil-fuels
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Introduction

Advantages of a direct-fired sCO2 power cycle

• Compact hardware

• Greater efficiency

• Nearly 100% carbon capture

Challenges

• Lack of validated combustion modeling techniques

• Combustor design best practices are still developing

• High pressure and temperatures lead to costly hardware (think rocketry)
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Advantages of sCO2 Power Cycles

• High fluid densities lead to compact turbomachinery 

Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006
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Advantages of sCO2 Power Cycles

• Offer +3 to +5 percentage points over supercritical 
steam for indirect coal fired applications
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Advantages of sCO2 Power Cycles

Nearly 100% carbon capture
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Petra Nova power plant (Houston)
240 MW, 90% CC, $1 billion retrofit cost
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Project Objectives

• Design a 1 MW thermal oxy-fuel combustor capable of generating 1200°C outlet temperature

• Manufacture combustor, assemble test loop, and commission oxy-fuel combustor 

• Evaluate and characterize combustor performance using optical access for advanced 
diagnostics
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Cycle Conditions

• Combustor Inlet and Outlet 
temperatures dictated by reviewing 
previous cycle modeling work done 
at SwRI

• Combustor inlet temperature: 700°C 
at 200 bar

• Combustor outlet temperature: 
1200°C

• Achieves a plant efficiency 
comparable to a NGCC power plant
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Combustor Schematic
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Combustor Design Key Considerations

• Mechanical casing

• Fluid flow path

• Fuel injector

• Oxygen injection

• Combustor liner thermal management

• Optical access

• Acoustic resonance

• Instrumentation

• Design for additive manufacturing



11

Oxygen System

• Guidance from personnel at NASA Stennis and 
White Sands, review from project partner Air 
Liquide

• LOX tank with cryogenic pump and ambient 
vaporizer

• Oxygen injection upstream of fuel injector

Vaporizer

Purged DAQ Box

Flow Control
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Laser Ignition System

• Class 4 Quantel Qsmart Twins

• 2x380mJ @ 532nm, 10Hz

• Gen 2 Laser Ignition Probe – 
Improved lens protection & beam 
alignment 
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Laser Ignition tests

Katcher et al. 2019



14

Laser Kernel Behavior in sCO2

Gupta et al. 2022
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Laser Ignition tests
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Laser Ignition tests
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Fuel Injector
• Additively manufactured Haynes 282

• 32° swirl angle of inlet vanes chosen 
after literature review and CFD 
simulations

Methane Fuel Injection Point

CO2 Face Cooling
CO2 + O2 Premix

Swirling Vanes
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Combustor Cooling
CO2 bypass gas enters annulus from a dedicated line (highlighted in blue) with flow control, 
allowing remote manipulation of combustor liner temperatures
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Water Separator

Inlet

Outlet

Coalescing
Cartridges

Cyclone
Separators

Other contaminants like carbonic acid need to be sensed and removed as well!
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Combustor Fabrication
Combustor

Injector

Inlet Flange
Combustor
as-printed

Injector
as-printed

Injector
as-machined

Combustor
as-machined
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Combustor Rig

Combustor Stack

Pressure Vessel

Combustor Pressure Vessel
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CFD Design

Chemical Kinetics

Mesh Sensitivity

Injection and Swirl

Cooling/Recirculation Schemes

Startup Conditions

Heat Release And Flame Holding

Georgia Tech

Wall Temperatures

Unreacted Products

Equation of State and 
Turbulence

𝑘𝑘 − ε 
RANS ANSYS FLUENT

Real gas effects

Steady State vs. Transient
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Chemical Kinetics
Georgia Tech and University of Central Florida each created combustion 
mechanisms for the sCO2 oxy-combustion system.
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Turbulent Combustion
• Combustion is associated with chemical reaction, and transport phenomena 

Length scale varies 
o Smallest Kolmogorov length scale to integral 

turbulent length scale
o Laminar flame thickness

• Time scale varies
o Kolmogorov time scale to integral turbulent time scale
o Laminar flame speed

• To completely solve the combustion process , all chemical species and reactions 
need to be included and both time and length scale needs to be resolved

• To do that, Direct Numerical Simulation (DNS) needs to be performed which 
is computationally prohibitive

• To make it computationally feasible; combustion and turbulence modeling is required
• Careful selection of turbulence chemical kinetics models is needed! Flame speed 

measurements are very uncertain!

CONVERGE CFD
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Turbulence Modeling

CONVERGECFD

• Turbulent eddies in the flow enhances the rate of mixing of momentum, energy, and species 
• These eddies are present at different length scales from small to large 

• Reynolds-Averaged Navier-Stokes (RANS): This model is used to account for 
mixing by introducing turbulent diffusion coefficients for momentum, energy, and species

• Large Eddy Simulations (LES) turbulence model:  Resolve the large length scale
and model the small length scale

• Turbulence also affects flame speed, but that is worthy of its own presentation
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Grid Sensitivity

• The chemical kinetic simulations also 
explored grid dependence.

• 13 species mechanism were used, UCF and 
Georgia Tech have since published newer 
models.

• Results were a general understanding of 
the minimum resolution that supports 
adequate chemical resolution.

• Both reaction mechanisms adequately 
modeled species and temperature changes.

• Grid size requirements are dependent in 
part on turbulence models.
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Flow Field

• Swirler design, combustor shape, fuel 
injection, and cooling flow allocation control 
the flow field inside the combustor

• Light-off should be conducted at low 
temperatures and pressures. But what 
about real gas effects? Operation near the 
critical point is poorly understood

• Fuel injection and flow must accommodate 
all operating conditions, including startup.

• Relevant fluid physics need to be modeled 
with increasing fidelity as design process 
proceeds.
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Design and Optimization

Preliminary approaches can explore the design space 
using low-cost, low-fidelity steady RANS simulations.
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Steady vs. Unsteady Modeling

Steady RANS Simulation

Unsteady DDES Simulation
(~5-10x cost per run)
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Combustor Design

When switching from RANS to an 
unsteady simulation are the key 
flow features preserved? In our 
case:

• Swirl – Yes

• Mixing – No

RANS Simulation DDES Simulation

Streamlines Comparison



31

Unsteady Combustion Simulations

Unsteady combustion simulations show oscillatory shear layer mixing and 
hot gas impingement on combustor outer walls.
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Unsteady Combustion Simulations
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Time-averaged DES results
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Notional Wall Temperatures

Conservative adiabatic simulations suggest peak combustor wall 
temperatures near 1000 C, which will be decreased further with 
exterior cooling flows.
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Contact Information:

 Brian.Connolly@swri.org

 Steve.White@swri.org
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