Direct-fired Oxy Combustion
in sCO, Power Cycles
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Introduction

Advantages of a direct-fired sCO2 power cycle
* Compact hardware
* Greater efficiency

* Nearly 100% carbon capture
Challenges
* Lack of validated combustion modeling techniques

* Combustor design best practices are still developing

* High pressure and temperatures lead to costly hardware (think rocketry)




Advantages of sCO, Power Cycles

* High fluid densities lead to compact turbomachinery

Steam turbine: 55 stages / 250 MW
Mitsubishi Heavy Industries Ltd, Japan (with casing)

X.L.Yan, L.M. Lidsky (MIT) (without casing)

i‘ Helium turbine: 17 stages / 333 MW (167 MW,)

Supercritical CO, turbine: 4 stages / 450 MW (300 MW,)

- (without casing)
Compressors are of comparable size

*Wan is 6ft tall

@’ Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006




Advantages of sCO, Power Cycles

* Offer +3 to +5 percentage points over supercritical

steam for indirect coal fired applications
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Advantages of sCO, Power Cycles

SOLVENTS

Nearly 100% carbon capture
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Project Objectives

* Design a | MW thermal oxy-fuel combustor capable of generating 1200°C outlet temperature
* Manufacture combustor, assemble test loop, and commission oxy-fuel combustor

* Evaluate and characterize combustor performance using optical access for advanced

diagnostics
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Cycle Conditions

* Combustor Inlet and Outlet
temperatures dictated by reviewing
previous cycle modeling work done
at SwRI

» Combustor inlet temperature: 700°C
at 200 bar

Pressure (bar)

* Combustor outlet temperature:
1200°C

* Achieves a plant efficiency
comparable to a NGCC power plant
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Combustor Schematic

Cooling CO,

Fuel Quench CO,

Bypass CO, O,

Combustor

Exhaust Mixer
Cooling CO,




Combustor Design Key Considerations

Mechanical casing

Fluid flow path

Fuel injector

Oxygen injection

Combustor liner thermal management

Optical access

Acoustic resonance

Instrumentation

Design for additive manufacturing

SwhI




Vaporizer

Oxygen System

* Guidance from personnel at NASA Stennis and
White Sands, review from project partner Air
Liquide

Purged DAQ Box
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* LOX tank with cryogenic pump and ambient
vaporizer

* Oxygen injection upstream of fuel injector



Laser Ignition System

e Class 4 Quantel Qsmart Twins

* 2x380m] @ 532nm, IOHz

* Gen 2 Laser Ignition Probe —
Improved lens protection & beam
alignment




Laser Ignition tests
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Laser Kernel Behavior in sCO,

34.5 bar

68.9 bar

103.4 bar

138.0 bar

158.6 bar

143 mm from lens

Gupta et al. 2022




Laser Ignition tests
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Laser Ignition tests
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Fuel Injector

 Additively manufactured Haynes 282

* 32° swirl angle of inlet vanes chosen
after literature review and CFD
simulations

CO, Face Cooling

Methane Fuel Injection Point

Swirling Vanes




Combustor Cooling

CO, bypass gas enters annulus from a dedicated line (highlighted in blue) with flow control,
allowing remote manipulation of combustor liner temperatures




Woater Separator ‘

H-,0O/CO, density ratio
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Combustor Fabrication
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Combustor Pressure Vessel

Combustor Rig
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Heat Release And Flame Holding Cooling/Recirculation Schemes
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Figure 1-9. Details of the Swirling and Fuel Injection Schemes. Left: 10° Swirling Down Angle;
Center: 40° Swirl Angle and Facial Sweep; Right: Swirler Inlet Facial Features
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Figure 1-16. Comparison of Temperature Contours and Velocity Vectors for the Three Operating
Condition Cases: Design Conditions (Top), Cold Start (Middle), Fast Start (Bottom)

Chemical Kinetics
Kinetics Knowledge Base Chemical Reaction Kinetics

Equation of State and
B e A Wall Temperatures 9

reactions withdegens of termeciate chamiclspecie Turbulence

Kinetic Mechanism

-

Current Application
Pu

Pressure

Sparse data at high pressure, low CO,

Steady State vs. Transient

| ANSYS FLUENT |

| Real gas effects |

Georgia Tech

Figure 1-7. Predicted Mole Fraction CO Versus Time Results




Chemical Kinetics

Georgia Tech and University of Central Florida each created combustion
mechanisms for the sCO2 oxy-combustion system.

0.95 CH, + 0.05 CHg + 1.55 0, — 2.05 H,0 + 1.05 CO

41 equations from the skeletal model

€0 +050, - CO, involving H, Hy, O, 0,, H,0, H,0,, HO,,

OH, HCO, CO, and CO,

Figure 1-2. The Conversion of the 6-Species Kinetic Model to a 13-Species Kinetic Model
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Figure 1-3. Simplified Premixed Reaction Chamber

Table 1-1. Premixed Chamber Inlet Species Mass Fractions =
Component Inlet Mass Fraction .
C:He 0.00113
CHa 0.01148 . R N
O, 0.05003 Figure 1-5. Predicted Mole Fraction CHs Versus Time Results
N COs 0.93738

Table 1-2. Computational Comparison between the 6-Species and 13-Species Simulations
Elements Species Equations Processors Time (s) Time Factor
2.32E+06 6 2 15 3,852 1
2.32E+06 13 42 15 7,675 2.0
1.34E+06 6 2 15 2,081 1
1.34E+06 13 42 15 4,388 2.1
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Turbulent Combustion

* Combustion is associated with chemical reaction, and transport phenomena
Length scale varies

o  Smallest Kolmogorov length scale to integral
turbulent length scale
® Laminar flame thickness

 Time scale varies

o  Kolmogorov time scale to integral turbulent time scale
o  Laminar flame speed

* To completely solve the combustion process , all chemical species and reactions
need to be included and both time and length scale needs to be resolved

* To do that, Direct Numerical Simulation (DNS) needs to be performed which
is computationally prohibitive

* To make it computationally feasible; combustion and turbulence modeling is required

* Careful selection of turbulence chemical kinetics models is needed! Flame speed
measurements are very uncertain!

CONVERGE CFD




Turbulence Modeling

* Turbulent eddies in the flow enhances the rate of mixing of momentum, energy, and species
* These eddies are present at different length scales from small to large
* Reynolds-Averaged Navier-Stokes (RANS): This model is used to account for
mixing by introducing turbulent diffusion coefficients for momentum, energy, and species
* Large Eddy Simulations (LES) turbulence model: Resolve the large length scale

and model the small length scale

* Turbulence also affects flame speed, but that is worthy of its own presentation
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Grid Sensitivity

* The chemical kinetic simulations also
explored grid dependence.
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Table 1-3. Mesh Statistics for Premixed Chamber

Elements Element Multiplication Factor

* Results were a general understanding of 005E+06 10 e

0.40E+06 8.0

the minimum resolution that supports
0.85E+06 17.0

adequate chemical resolution. 130E+06 260
2.30E+06 46.0
1.34E+06 26.8

6.17E+06 122.0

* Both reaction mechanisms adequately R R
modeled species and temperature changes.

Figure 1-11. Predicted Mole Fraction of CH, Versus Time Results for Various Resolutions
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Swirler design, combustor shape, fuel
injection, and cooling flow allocation control —
the flow field inside the combustor
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Desigh and Optimization

Preliminary approaches can explore the design space
using low-cost, low-fidelity steady RANS simulations.
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Steady vs. Unsteady Modeling

Temp
s 1.800e+03
1.719e+03
1.637e+03
1.556e+03
1.475e+03
. . 1.394e+03
Steady RANS Simulation 1.3126+03
1.231e+03
1.150e+03
1.069e+03

Unsteady DDES Simulation
(~5-10x cost per run)




Combustor Design

RANS Simulation DDES Simulation

When switching from RANS to an
unsteady simulation are the key
flow features preserved? In our
case:

e Swirl —Yes

* Mixing — No Residence Time

@ Streamlines Comparison



Unsteady Combustion Simulations

Temperature

Contour 2
1600
1500
1400
1300
1200
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1000
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Unsteady combustion simulations show oscillatory shear layer mixing and
hot gas impingement on combustor outer walls. I_’, .,

SwhI




Unsteady Combustion Simulations

Temperature
Contour 2

= 1.800e+03 ANSYS
1.719e+03 2020 R1
1.637e+03
1.556e+03
1.475e+03
1.394e+03
1.312e+03
1.231e+03
1.150e+03
1.069e+03
9.875e+02
9.063e+0




Time-averaged DES results
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Notional Wall Temperatures

Tem8erature
' 1000
900

I 800

700

' 600

[C]

Conservative adiabatic simulations suggest peak combustor wall
temperatures near 1000 C, which will be decreased further with
exterior cooling flows.

SwhI




Contact Information:
Brian.Connolly@swri.org

Steve.White@swri.org
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