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About Me

• Thermal energy systems 
researcher at NREL

• Contributed to models for 
System Advisor Model 
(SAM), including:
– Linear Fresnel
– Parabolic Trough
– Pumped Thermal Energy 

Storage



NREL    |    4

Background

• CSP cycles benefit from large HTF 
temperature deltas because:
– Less HTF mass in system
– Lower storage costs
– Less pumping power
– Higher receiver efficiency

• Generally, larger HTF temperature 
deltas lead to lower efficiency 
cycles

System Advisor Model Version 2022.11.29 (SAM 2022.11.21). National Renewable Energy 
Laboratory. Golden, CO. Accessed February 28, 2024. https://https://sam.nrel.gov.



NREL    |    5

Background Cycles

Neises, Ty, and Craig Turchi. “Supercritical Carbon Dioxide Power Cycle Design and Configuration 
Optimization to Minimize Levelized Cost of Energy of Molten Salt Power Towers Operating at 650 °C.” 
Solar Energy 181 (March 2019): 27–36. https://doi.org/10.1016/j.solener.2019.01.078.

https://doi.org/10.1016/j.solener.2019.01.078
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Recompression with HTR Bypass

• Based on the recompression 
cycle

• Adds second HTF heat 
exchanger for flow that 
bypasses the HTR

• Ideally, maintains efficiency 
of recompression and 
decreases HTF outlet 
temperature
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Solving the Cycle

• Inputs
– Design power
– Component properties

• Turbomachinary efficiency
• Heat exchanger conductance, min dT

– HTF inlet temperature
– PHX and air cooler approach 

temperatures
• Assumptions

– Pressure loss is fraction of total 
pressure (independent of mass 
flow rate)

– No pressure drop in mixers
• Constraints

– Mixer 2 dT = 0
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Model Validation

Alfani 2020
[1] (coal)

Moullec 2019
[2] (CSP)

Alfani 2019
[3] (waste heat)

Paper Model Paper Model Paper Model
W design (MW) 108.428 108.428 10.01 10.01 5.863 5.863

sCO2 mdot (kg/s) 1041.54 1040.64 162.94 163.02 140.17 138.98
HTF Outlet Temp (C) - 460.98 290 291.19 214.06 212.31

Thermal Eff. (%) 46.49 46.43 34.4 34.3 30.35 30.41
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Alfani 2020 Case Parameters [1]

Parameter Value Unit
Net Power 100 MWe
HTF Inlet Temperature 640 C
PHX Inlet Approach Temperature 20 C

Ambient Temperature 25 C
Air Cooler Approach Temperature 8 C

Turbine Isentropic Efficiency 89.8 %
Main Compressor Polytropic 
Efficiency

77.7 %

Recompressor Polytropic Efficiency 76.7 %

Max Pressure 25 MPa
Air Cooler Parasitic Power 0.87805 MWe
Total Recuperator Conductance 36.85 MW/K
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Ts Diagram

w/ HTR Bypass w/o HTR Bypass



Optimization
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Optimization

• Design Variables:
– Recompression Fraction
– Bypass Fraction
– Minimum Pressure
– Recuperator Conductance 

Ratio
• Constraints:

– Target HTF Outlet Temperature
• Objective Targets:

– Max Thermal Efficiency 𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
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Optimization
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Optimization Validation

• We ran a parametric sweep of 
design variables to compare 
optimization results

• Each design variable was 
divided into 20 values, 
resulting in 160,000 total runs

• The sweep produced a pareto 
front maximizing thermal 
efficiency and minimizing HTF 
outlet temperature
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Optimization Validation

• We validated the 
optimization against the 
pareto front from the 
parametric sweep

• Each optimization data point 
is targeting its respective HTF 
outlet temperature



Parametric Sweep – Fixed Conductance
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Cycle Comparison – Fixed Conductance

• We ran a parametric sweep 
for each of the 4 cycles
– Simple
– Recompression
– Recompression with HTR 

Bypass
– Partial Cooling
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Subset Configurations

• The parametric sweep revealed 
subset configurations, when 
the recompressor is removed

• Simple intercooling cycle is 
formed from the partial cooling 
cycle with recompression 
fraction = 0

• Simple split flow bypass cycle is 
formed from HTR bypass cycle 
with recompression fraction = 
0

Simple Intercooling

Simple Split Flow Bypass
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Parametric Sweeps - Fixed Conductance
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Pareto Fronts - Fixed Conductance
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Pareto Fronts - Fixed Conductance

At high HTF outlet 
temperatures, the bypass 
fraction = 0 for the 
recompression with htr bypass 
cycle
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Pareto Fronts - Fixed Conductance

The recompression cycle is 
unable to reach lower HTF 
temperatures at this point
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Pareto Fronts - Fixed Conductance

The simple intercooling cycle 
approaches partial cooling 
cycle efficiencies as the HTF 
outlet temperature decreases
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Pareto Fronts - Fixed Conductance

The partial cooling cycle can no 
longer decrease the 
recompression fraction and 
pressure ratio, causing a gap in 
effciency
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Pareto Fronts - Fixed Conductance



Recuperator Conductance Analysis
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Varied Conductance

• The previous sweep used a fixed 
total conductance for the 
recuperators (36.85 MW/K)

• Decreasing conductance can 
reduce the HTF outlet temperature 
(limits recuperated heat)

• We conducted a new sweep for 
each configuration with varied 
total conductance
– UA=0.1-50 MW/K
– All other design variables 

optimized for efficiency UA=18.43 MW/K

UA=36.85 MW/K

HTF delta T: 178.5 °C

𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒: 46.7%

HTF delta T: 186.2 °C

𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒: 43.7%
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Pareto Fronts – Varied Conductance

• Each point is one total 
recuperator conductance, all 
other variables optimized for 
efficiency

• Not necessarily most optimal 
cycles, because multiple 
‘optimal’ cycles could use the 
same total conductance
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Pareto Fronts – Varied Conductance
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Pareto Fronts – Varied Conductance



Conclusion
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Future Research

• Integrate power cycles into 
CSP system analysis

• Optimize cycle design using 
system techno-economics

• Analyze more design 
conditions (turbo efficiency, 
inlet temperature, etc)

• Expand HTF temperature 
range for Gen3 particle 
applications

System Advisor Model Version 2022.11.29 (SAM 2022.11.21). National Renewable Energy 
Laboratory. Golden, CO. Accessed February 28, 2024. https://https://sam.nrel.gov.
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HTR BP – Fixed UA



NREL    |    37

Recomp – Fixed UA
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Partial – Fixed UA
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Simple – Fixed UA
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Fixed UA - Bypass
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Variable UA



NREL    |    42

Variable UA
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Recompression 
Fraction

Bypass
Fraction

Conductance 
Ratio
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