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SRERC Test Facility

Facility Research Focus:
• Nuclear Reactor & Fuel Processing
• Power Cycle Technologies
• Solar Thermal Energy Systems
• Manufacturing

Facility Upgrades
• Electrical
• Piping
• Cooling System
• Auxiliary systems

• CO2 inventory system 
• Safety system and equipment  

• Foundations and Facilities

Fig5: Echogen Power Systems Thermal Management 
System Installed at SRERC.

Fig6: Linde CO2 Storage Tank Installed at 
SRERC.

Fig4: Satellite View of San Rafael Energy Research Center Facility with L1500 Furnace.
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L1500 Furnace

• 1500kWth pilot-scale entrained flow combustor
• 3-zone configuration: radiative, transition and 

convective sections.
• Refractory lined
• Dual-register, dual-swirl low-NOx burner
• Equipped with primary, inner secondary and 

outer secondary air injection.

Fig2: L1500 Furnace Burner w/Inlet Fuel Manifold Fig1: L1500 Furnace general arrangement. Three zone 
configuration, radiative, transition and convective.
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L1500 Furnace Cont.

Fig3: L1500 Furnace. Convective Section (in foreground) with Exhaust Piping and Cooling Manifold.
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• Water-cooled, cross-flow heat exchanger in 
convective section (shown in foreground).

• A baghouse captures particulate entrained in 
process air. 

• Gravimetric feed system with auger screw
• Fuels for this program consist of natural gas 

and western US bituminous coal. 
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CFD Modeling

Impact of Firing Rate
• Increasing the firing rate from 0.879MW to 

1.76MW (Param2) was effective in enhancing 
heat transfer.  

• A simultaneous increase in excess air played 
a crucial role in decreasing peak heat flux.

Fig7: CFD Heat Flux Comparison, Baseline and Param2 Cases

Fig8: CFD Gas Temperature Comparison, Baseline and Param2 Cases

Table1: CFD Results, Baseline and Param2 Cases

Units Baseline Param2
Total PHX Duty MW 0.632 1.143

Maximum Inc. Heat Flux to PHX W/m2 218,000 196,000
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CFD Modeling

Fig9: CFD Heat Flux Comparison, Param2 and Param6 Cases

Units Param2 Param6
Total PHX Duty MW 1.143 1.135

Maximum Inc. Heat Flux to PHX W/m2 196,000 185,000

Table2: CFD Results, Param2 and Param6 Cases
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Impact of Extended HX Surface
• Extending the heat exchanger by 

2ft decreased peak heat fluxes by 
nearly 6%, as demonstrated in 
Param6 compared to Param2. 

• Param6 was the selected 
installation option.
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CFD Modeling

Impact of Burner Swirl
• Swirl reduction produced a narrower flame sheet near burner
• Higher peak temperatures observed
• Rapid gas mixing yielded substoichiometric combustion and higher fluxes in some cases
Impact of Staging Air
• Staging air elongates the flame, reducing front-end heat flux
• Downstream mixing issues observed producing substoichiometric combustion
• Higher peak temperature 
• Increased incident flux 
Impact of Bluff Body
• Addition of the bluff body enhanced mixing while extending heat release
• Observed unfavorable peak heat flux due to intensified mixing
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CFD Modeling
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Fig10: PHX Total Heat Transfer Comparison Between Coal and 
Natural Gas
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Impact of Natural Gas Flame
• Running on 100% natural gas

• Increased heat fluxes at the 
near-burner end of the radiant 
section.

• Produced a substantial increase 
in peak tube metal 
temperatures (from 1100°F to 
1400°F) 

• Generated a 10% rise in 
predicted heat transfer to the 
PHX.
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PHX Design

Design Conditions:

• Tangent wall design per ASME Sect.I
• Material selection Super 304H
• Limited surface area due to retrofit 

application.
• Sensible heat transfer presented design 

challenges
• Managing heat flux is critical for maintaining 

PHX integrity.
 

Units (USC) Units (SI)

CO2 Inlet Temperature °F 779 °C 415

CO2 Outlet Temperature °F 1112 °C 600

CO2 Flow Rate lb/hr 43640 kg/s 5.5

CO2 Operating pressure PSIA 2955 MPa 20.37
Max Allowable Working 

Pressure PSIA 3975 MPa 27.41

Fig11: Primary Heat Exchanger (PHX) Installation 
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PHX Design

• Embedded heat flux sensors aid 
in verifying thermal modeling 

• 6 Locations
• Qty: 2, Near-wall
• Qty: 2, Mid-wall  

• Flow balancing valves are used to 
manage flow distribution and 
maintain desire flux levels.

• Skin thermocouples monitor tube 
metal temperatures.

Fig14: (Right) Flow Balancing Valve 
Installation with Outlet Header. 

Fig13: Heat Flux Sensors Installed on PHX Piping. 

Fig12: (Right) Heat Flux 
Sensor General Arrangement

Fig15: L1500 Furnace Elevation with Heat Flux Locations.
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PHX Design

• Heat transfer model aligns well with 
test data for the radiant module but 
significantly differs in the convective 
section due to observed fouling. 

• Thermal resistance assumptions 
impacted sCO2 exit temperature 
predictions.

• PHX efficiency = 60-65% (meets 
predictions).

• Peak heat input of 1.63MW from fuel. 
• Adjusting sCO2 flow rate demonstrated 

the capability to achieve full design 
conditions.
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Fig19: Test Data Comparison of sCO2 Exit 
Temperature Showing Impacts of Reduced 

Overall Heat Transfer to PHX 

Fig18: Comparison of Heat Transfer to PHX for 
Coal vs Natural Gas at 1.76MW Firing Rate
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PHX Design

• Measured total PHX pressure drop:
•  dP = 4.7bar (68psi)

• Model predicted total PHX pressure drop:
•  dP = 3.6bar (52psi)

• Incorporating valve and piping losses yields a total 
pressure drop, dP = 4.2bar (61psi, 89%) 

Sensor 
Position

CO2 Temps at 
Convective Outlet 

°C

CO2 Temps at 
Radiant Outlet 

(unbalanced) °C

CO2 Temps at 
Radiant Outlet 
(adjusted) °C

1 371 552 563
2 370 544 556
3 366 553 565
4 368 547 556
5 367 557 567
6 364 550 555
7 354 551 564
8 556 554
9 61* 59 *

10 548 555
11 554 561
12 560 567
13 562 584
14 583 564
15 563 583
16 590 583

• Temperature distribution in the radiant 
panels aligned well with predictions.

Table3: PHX Tube Temperature Distribution Comparison 
Between Unbalanced and Adjusted Flow Balancing Valves 
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Testing

Campaign 1 Achievements
• 1.6MW max heat input to PHX.
• 70hrs continuous operation.
• Heat-soaked start-up operation.

Fig21: Flow Distribution During Campaign 1 Endurance TestingFig20: Process Flow Diagram for sCO2 Cycle
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Testing

Campaign 2 Achievements
• Additional +70Hrs continuous operation.
• Avg. 1MW of heat input to PHX. 

Fig23: PHX Performance During Campaign 2 Endurance TestingFig22: Flow Distribution During Campaign 2 Endurance Testing
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Conclusions

• Increased heat rate of 1.76MW.

• Peak heat flux maintained below 175,000 W/m2. 

• Near-burner crossmember arrangement reduces peak heat 
flux.

• Increased excess air mitigates adiabatic flame temperature.

• Measured data aligns well with model predictions.

• Pressure losses aligned with predictions, and flow 
distribution improved by adjusting balancing valves.

•  Flux sensor readings require further review for accuracy.

• Ongoing testing goals:
• Obtain full design conditions.
• Investigate material integrity to reduce risks 

associated with design and manufacturing.

San Rafael Swell
39.09552°N, 110.74892°W
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