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The SCO, Axial compressor

Echogen Pumped Thermal Energy Storage System (PTES) defines compressor
requirements

9 stage 100 MW SCO, compressor design

Scaled 10 MW first 3-stages of the compressor designed/optimized by UC and to be
tested in NDTL’s 10MW test cell

SAize: 0.25m in diameter and 15 cm 1n length

SCO,

* High thermal efficiency

* Compact physical footprint

* Operational flexibility

* Abundant, low cost, non-toxic
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Above its critical point (304.13K, 7.3773MPa),
CO; behaves like a supercritical fluid.
(Ben Finney, Mark Jacobs [ Wikimedia Commons)
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MLCO
First Stage Results

* Detailed Results Presented Thursday 8:30 at this symposium by Jeongseek Kang
from Notre Dame Turbomachinery Lab (paper #44)
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Three Stage
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Axial Compressor Design/Optimization System

Similar to traditional approach of using meanline — axisymmetric — 3D CFD — static
FEM — Campbell diagrams

Second and Third stage designs completed before first stage test

Details of Design System are Unique and
Revolutionary
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Axial Compressor Design

CO, Application

Open Source meanline code Py-
C-Des using CO, properties in
tables from Refprop

3D geometry from T-Blade3

Parametric

Creates sections on surfaces of
revolution

2nd derivative of blade meanline
plus NACA thickness

Lean and Sweep

Creates solid model by connecting
with ESP

Traditional

* Proprietary meanline code

* Very Simple geometry or
proprietary geometry generator

— Connections to CAD are
proprietary or cumbersome
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Axial Compressor Design

Traditional

CO, Application
No empirical base to start from —
design from first principles

Axisymmetric Solver from MIT
mtflow (limited because fixed
gamma)

Builds in Off-Design Range and
Operability
Blade-to-Blade Optimization

— At design inlet angle and 7-degree
incidence

— Constrains exit angle
— Solidity is a parameter (chord)
— Uses OpenMDAO and Mises

Usually, an evolutionary step from a
prior design

Proprietary axisymmetric solver

Operability improvements from design
point changes

Solidity usually comes from past
experience or old test data

Uses expert designer for blade-to-blade
design or simple optimization



Axial Compressor Design

CO, Application

e Parametric Optimization in 3D

— Multi-objective functions include
design and off-design efficiency to
build in stall margin

— 3D method has CO, tables so
multi-blade row simulation
accounts for real properties

e Solid model from ESP i1s used for
FEM
— Static stresses
— Campbell Diagram
— Automated hot-to-cold

Traditional

* Expert designer typically makes
geometry changes by hand with
hand running of simulation

* Solid models from geometry built
in CAD by hand or specialized
scripts

* Hot to Cold process is proprietary



Axial Compressor Design

CO, Application Traditional
* Design team 1s one * Design teams are usually in
professor’, 4 graduate an aero group and separate
students, 2 undergraduates structures group with
and former student’s work information sent 1n files by
to build from hand
— does not include build and test
provided by NDTL
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Compressor Design and Optimization

[ Design Parameters }

Inputs:
Initial T-Blade3 input
Mises run file

U --=-=e=m-eem---—---IMeanline Design
Py-C-DES

¢

‘ -mmmemmmemmeemee-- AXiSYMmMmetric Design

T-AXI

Tblade3 Input Files

-s=menmmm------Geometry Generation

T-blade3

Meanline and axisymmetric design

Y
Enter OpenMDAO:

v

Generate T-Blade3 .blade & .dat

 J

Run Mises
Parse Results to OpenMDAO

v

Run Optimizer
Update T-Blade3 input

Parse Optimization Results File
Extract Optimum Blade

10 Gradient Evaluations

Objective Function is 0.4 times loss coef
at DP + 0.6 times loss coef off design

Blade-to-Blade Optimization Flowchart



Tblade3 Input file

Design
Variables

Spancontrol file

Thblade3

Geomturbo 3D Optlmlzatlon
OpenMDAO Sl _ Flown Chart

Script optimization

Lo Autogrid

No constraints used for
Fine/Turbo this application

Objective Function m University ofl@
Constraints ClNC|NN£\T|




Three Stage Design

Row Tip Hub Tip Gap Tip Fillet Blade Count
Radius LE Fillet (mm) (mm)
(mm) (mm)
: 43

134.79 1.6

134.22 1.6 0.201 - 69
S1 131.56 1.6 - 1.6 114
128.62 1.6 0.192 - 88

126.24 1.6 - 1.6 112

123.59 1.6 0.186 - 83

122.09 1.6 - 1.6 101

Hub Radius — 102mm



Three Stage Hardware
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Rotor 3




MISES (Quasi-3D Optimized Results)
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Design Incidence (left) and 7-deg incidence (right) rotor 2 blade (MISES)
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Contours at
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Incidence




Rotor 2 Shape Factor at Design Incidence
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MISES (Quasi-3D Optimized Results)
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Design Point (left) and 7-deg incidence/’}ight) Stator 2 (midspan)
Constrain to exit flow angle at the design incidence




Row No. of Grid Points
C F D D eta i IS IGV 193 3.82 million

289 9.9 million
193 8.6 million
Solver : Fine/Turbo 03 I
BC’s inlet : PT at inlet, TT = 371.15K 60 million
BC'’s outlet: Ps at exit, M = 0.47
e e
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Driver — Genetic
(OpenMDAO)
Population size — 50
Crossover — 0.1
Mutation — 0.01

3D Optimization

Pareto front for stator2 inbeta* optimization at 25%, 50% and 75% span

Near-Stall Case Efficiency (Mexit = 0.43)
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Iteration Starting point
Best Case "

0.9016 0.9018 0.9020 0.9022 0.9024 0.9026 0.9028 0.9030

Design Case Efficiency (Mexit = 0.47)

Objective Functions are a Design Point Efficiency and an Off
Design Efficiency (closer to stall)
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PR_tot

Performance Maps for Final Design

Massflow vs PR_tot Massflow vs IsenEff
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At 100% speed, design point efficiency is 89.85%, PT ratio of Universityof-l(dj
2.61, and mass-flow rate of 125.86 kg/sec CINCINNATI
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Power for Final Design

Massflow vs Power
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At 100% speed, and design inlet total pressure, the power is 9.52 MW.  cINCINNATI
This does not include lost power with bearings and motor efficiency.



Safety Factor Contours
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R2 safety factor contour on pressure side (left) and suction side (right). R3 safety factor contour on pressure side (left) and suction side (right).
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Conclusions

Revolutionary Design/Optimization Approach has been used for a detailed
design of an axial CO, compressor

Safety factors exceeding 2 for the second and third stage rotors using static
structural analysis

The final design is predicted to have an adiabatic efficiency of 89.9% and
total pressure ratio of 2.61

The 3-stage rig has been run in air and CO, at 30% speed. High speed
testing is expected in March -
University of -l(‘['
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