Increasing Main Cooler Thermal Performance for sCO$_2$ Power Cycles

Matthew Searle
NETL Support Contractor

8th International Supercritical CO$_2$ Power Cycles Symposium
Feb. 26–29, 2024, San Antonio, Texas
Paper #4
Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Authors and Contact Information

Matthew Searle1,2; Doug Straub1

1National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26505, USA
2NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA
Introduction and Motivation

- sCO₂ power cycle performance is highly dependent on ambient temperature (Wright, 2011; Conboy, 2015).
- Reducing CO₂ cooler outlet temperature increases cycle efficiency and lowers levelized cost of electricity (LCOE) (Pidaparti, 2020).
- Heat transfer enhancement integrated via monolithic additive manufacturing (AM), is a pathway to lower cost heat exchangers.
- AM heat exchangers may be cost competitive with printed circuit heat exchangers (PCHE) for small-duty applications (Robey, 2022).

6 °C reduction* -> + 1.4% point in efficiency
- 3.8% in LCOE

* Provided effective cooler and heat rejection temperature (Pidaparti, 2022)
Materials and Methods

- Shell and tube heat exchanger constructed with conventional tube.
- Inlet flows instrumented with mass flow, pressure, and temperature.
- Outlet flows instrumented with temperature and differential pressure.
- Wall temperature measurements on shell side.

Table

<table>
<thead>
<tr>
<th></th>
<th>CO₂ (Tube)</th>
<th>Water (Shell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Temperature (K)</td>
<td>$T_{t,i}$</td>
<td>$T_{s,i}$</td>
</tr>
<tr>
<td>Inlet Pressure (MPa)</td>
<td>$P_{t,i}$</td>
<td>$P_{s,i}$</td>
</tr>
<tr>
<td>Mass Flow Range (kg/s)</td>
<td>m_t</td>
<td>m_s</td>
</tr>
<tr>
<td>Reynolds Number Range, (-)</td>
<td>Re_t</td>
<td>8×10^4 to 1.3×10^5</td>
</tr>
<tr>
<td>Mass Flow Range (kg/s)</td>
<td>m_s</td>
<td>$0.016–0.126$</td>
</tr>
</tbody>
</table>
• Script reduces data to determine local heat transfer coefficients.
 • Assumption of uniform heat flux (see the following slide on approach verification).
 • Heat duty calculated from inlet and outlet conditions. Friction factor from pressure drop.
 • Uncertainty analysis by Kline and McClintock approach.

• Two test articles:
 • Conventional commercial tubing.
 • Additively manufactured (AM) tubing with square cross-section and rib turbulators.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Exchanger Length</td>
<td>L</td>
<td>1.04 m</td>
</tr>
<tr>
<td>Conventional Tube Outer Diameter</td>
<td>OD</td>
<td>9.5 mm</td>
</tr>
<tr>
<td>Conventional Tube Hydraulic Diameter</td>
<td>D_h</td>
<td>7.04 mm</td>
</tr>
<tr>
<td>Square Tube Inner Hydraulic Diameter (side wall length)</td>
<td>D_h</td>
<td>4.98 mm</td>
</tr>
<tr>
<td>Rib Height</td>
<td>e</td>
<td>0.39 mm</td>
</tr>
<tr>
<td>Rib Angle</td>
<td>α</td>
<td>60°</td>
</tr>
<tr>
<td>Rib Pitch to Height</td>
<td>P/e</td>
<td>10</td>
</tr>
<tr>
<td>Rib Height to Hydraulic Diameter</td>
<td>e/D_h</td>
<td>0.078</td>
</tr>
</tbody>
</table>
Verification of Test Approach

Uniform Heat Flux Assumption

- Full conjugate model: convection in shell (water) and tube (CO₂) and conduction in wall (316 Stainless Steel).
- Reynolds averaged Navier Stokes (RANS).
- k-ω shear stress transport (SST) turbulence model.
- REFPROP 10.0 property data provided at 50 points spanning temperature range in CO₂.
- 0.5 mm mesh (heat transfer coefficient resolved to within 1.6%).
- Inlet/outlet conditions and geometry match experiments.
- Adiabatic shell outer wall. No axial heat flux in pipe at inlet/outlet.

![Diagram showing shell, tube, and wall with mesh representation.]
Local Surface Temperatures

\[\theta_w = \frac{T_w - T_{s,i}}{T_{t,i} - T_{s,i}} \]

\[Re_t = 1 \times 10^5 \]

30% increase in \(\theta_w \) (decrease in \(T_w \)) for \(x > 0.6 \) m
Local Heat Transfer Coefficients

Smooth conventional tube

\[Re_t = 1 \times 10^5 \]

\[
\begin{array}{c}
\text{Smooth conventional tube} \\
\text{Square tube with ribs}
\end{array}
\]

\[Re_t = 1 \times 10^5 \]
Comparison to Correlation

$Re_t = 1 \times 10^5$

$T_{pc} = 307.8$ K

Smooth conventional tube

$Nu_b = 0.023 \text{Re}^{0.8} \text{Pr}^{n}$

Dittus-Boelter

$Nu_b = \begin{cases}
0.14 \text{Re}_b^{0.69} \text{Pr}_b^{0.66} & \frac{T_{pc}}{T_b} < 1 \\
0.013 \text{Re}_b^{0.35} \text{Pr}_b^{-0.05} & \frac{T_{pc}}{T_b} \geq 1
\end{cases}$

Yoon (2003)

Square tube with ribs

$St_{2} = \frac{f_i \lambda}{2 \left[G(e^*) - R(e^*) \right] \sqrt{\frac{f_i}{2} + 1}}$

Han & Park (1988)
Average Heat Transfer Coefficient, \bar{h}, and Friction Factor, f, Results

\bar{h} increases by 70% to 180%.

Q'', tube wall heat flux
G, tube mass flux
$Re_t = 1 \times 10^5$
Heat Exchanger Effectiveness and Cycle Efficiency

\[\varepsilon = \frac{(T_{t,i} - T_{t,o})}{(T_{t,i} - T_{s,i})} \]

Data adapted from Pidaparti (2022)

+13% (0.072) in \(\varepsilon \) -> +0.6% point in cycle efficiency
Conclusions

• For $T/T_{pc} < 1.05$, Yoon correlation was more accurate than Dittus-Boelter.
• Angled rib tubes had 70% to 180% larger average heat transfer coefficient than smooth tube.
• Heat exchanger effectiveness due to angled rib turbulators was greater at low water flow rates and high sCO$_2$ flow rates.
• Angled ribs yielded a 13% increase in heat exchanger effectiveness (0.072 increment) at tube Reynolds number equal to 1.3×10^5.
• The 0.072 increment in effectiveness yields 0.6% point improvement in cycle efficiency.
Acknowledgments

This work was performed in support of the U.S. Department of Energy’s (DOE) Fossil Energy and Carbon Management’s Turbines Research Program and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center’s sCO₂ Field Work Proposal. The authors would like to acknowledge the contribution and expertise of site operations support contract personnel including Mr. Dennis Lynch, Mr. Rich Eddy, and Mr. Jeff Riley.
References

