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Thermal design

Operational strategy



Design SpecificationsThermal Design

Description Value Unit

Heat rejection 1 MWth

sCO2 mass flow rate 5 kg/s

Primary outlet temperature 715 °C

Operating pressure 262 (3800) bar (psi)

sCO2 flow loop heat rejection
Heating with concentrating solar power

 Particles heated with concentrated solar flux

 Hot particles heat up sCO2

Air-cooled heat exchanger for heat rejection

 Heat rejection to atmosphere

 Chiller for cooling critical components

Thermal energy storage integration 

 Energy stored in solid medium - indirect

 High temperature rated sand-like particles
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S o l a r  H e a t  I n p u t



Primary Heat Exchanger

sCO2 flow loop heat rejection
Heating with concentrating solar power

 Particles heated with concentrated solar flux

 Hot particles heat up sCO2

Air-cooled heat exchanger for heat rejection

 Heat rejection to atmosphere

 Chiller for cooling critical components

Thermal energy storage integration 

 Energy stored in solid medium - indirect

 High temperature rated sand-like particles

Thermal Design
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Heat Rejection

sCO2 flow loop heat rejection
Heating with concentrating solar power

 Particles heated with concentrated solar flux

 Hot particles heat up sCO2

Air-cooled heat exchanger for heat rejection

 Heat rejection to atmosphere

 Chiller for cooling critical components

Thermal energy storage integration 
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Thermal Design
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Component Cooling

sCO2 flow loop heat rejection
Heating with concentrating solar power

 Particles heated with concentrated solar flux

 Hot particles heat up sCO2

Air-cooled heat exchanger for heat rejection

 Heat rejection to atmosphere

 Chiller for cooling critical components

Thermal energy storage integration 

 Energy stored in solid medium - indirect

 High temperature rated sand-like particles

Thermal Design
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Energy Storage Integration

sCO2 flow loop heat rejection
Heating with concentrating solar power

 Particles heated with concentrated solar flux

 Hot particles heat up sCO2

Air-cooled heat exchanger for heat rejection

 Heat rejection to atmosphere

 Chiller for cooling critical components

Thermal energy storage integration 

 Energy stored in solid medium - indirect

 High temperature rated sand-like particles

Thermal Design
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Status update at Sandia
Ground based testing

CSP Integration and construction



Cold flow loop commissioning

Pump control and commissioning

 High pressure rated pump casing

 Radial vane impeller design

 No seals in the pump

Ground based testing



G3P3 project  Summary

Project specifications – G3P3 USA

 6 MWhth of thermal storage at ~765 °C

 2 MWhth solar receiver

 1 MWhth sCO2 heat rejection loop

 Vertical transportation – bucket elevator

 Tower height – ~180 ft (~55 m)

Project specifications – G3P3 KSA

 6-7 MWth receiver

 3 MWhth air heat rejection loop

 Vertical transportation – skip hoist

CSP Integration 

2 MWth particle 
receiver

1 MWth

particle-to-
sCO2 heat 
exchanger

Thermal Storage Tank
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Piping Design Layout
Piping and equipment layout 

 Stainless steel piping – intermediate 
temperature

 Inconel piping – high temperature

 IN625

 IN740H
Thermal-mechanical design

 Support and stress analysis

 Skid mounted equipment

Instrumentation specification

 Flow and density 

 Temperature 

 Condition monitoring

Tower Integration
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G3P3 tower construction

sCO2 loop installation – next steps

 Equipment installation

 Piping installation

 Instrumentation and controls

 System commissioning

 Primary heat exchanger integration

CSP Integration 



Conclusions and path forward
Benefits and Challenges

Future Technology Development



ChallengesBenefits
• Higher temperature 

operation
• High cycle efficiency
• Low water 

consumption - ideal 
for CSP

• Compact turbo 
machinery

Benefits and Challenges

• Material selection
• Sourcing of materials
• Manufacturing of heat 

exchangers
• High temperature thermal-

mechanical design
• General supply chains



Technology 
Overview

Scope/Objectives

 Demonstrate 100 kWe x 10+ hr PARTICLE 
system

 sCO2 power cycle

 Grid connection

Timeline & Budget:

 3 year project

 $4M requested

Gen 3 Particle Pilot Plant (G3P3) at 

Sandia National Laboratories

 State-of-the art concentrated solar facility 

 Using existing infrastructure

 Unrivaled moving particle TES demonstration 
capability

P a r t i c l e  E l e v a t o r
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Future development -

Electrical Heating Retrofit
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