

sCO2... Research to Reality

Acknowledgement: "This material is based upon work supported by the Department of Energy under Award Numbers DE-EE0008996, DE-FE00031818, DE-FE0002979, DE-AR0001120, DE-EE0008737" Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

© General Electric Company. Al Rights Reserved.

sCO2 Power Cycle Walk

	Technology	persent-3 yrs TRL 3-5+ yrs Co	nnection to GE Roadmap
Gen	Oxy-Fuel	RPA-e (\$700K) Expander Heat source Compressor Heat Exchangers Scale-up Scale-up Scale-up Expander inlet temperature Tesource Heat Exchangers Heat Exchangers Scale-up Scale-up Scale-up Expander inlet temperature Meat Exchangers Heat Exchangers Scale-up Scale-up Scale-up Scale-up Expander inlet temperature Meat Exchangers Heat Exchangers Scale-up Scale-up	requires NG powered es nized by process omy
Fossi	Waste Heat Recovery	E FE Bearings (\$3M)E FE/SETO STEP (\$12MOM)• Heat source• Compressor• Heat Exchangers • Efficiency Challenge vs Recip Engines• Variety of Markets limits standardization• Fast sta	o requires NG powered es intensity reduction arting / flexibility
REN Gen	Concentrated Solar Power	 E SETO Bearing (\$3M) Near Net Shape HIP (\$2M) Beat Exchangers Beat Exchangers GE content low fraction of CAPEX Overall CSP system needs to meet LCoE targets 	owth in renewables ar capability with TES
Nuclear	Nuclear	everal commercial terests• Expander • Paced by advanced reactor timeline• Small m higher t • ScO2 hi temper	odular reactors support temperatures igher efficiency at higher atures

Commercial Roadmaps Still Challenged

GRCTHINK

GE Research Strategy

Process lubricated gas bearings Hermetically sealed turbomachinery Key to address commercial challenge: incorporate technologies that increase performance, lower cost, and/or enhance ancillary benefits.

Additive heat exchangers: Up to 900C capability; over 50% reduction in size and cost

Advanced sealing capabilities without limit to temperature and/or size

Advanced manufacturing modalities ~50% cost reductions

© 2022 General Electric Company - All rights reserved GE proprietary & confide

Complex economic modeling – dispatch strip charts

GE Research technologies applied at system level

Traditional GE products

ge

© 2017, General Electric Company. All Rights Reserved.

GE Strategy – traditional turbomachinery

Driving component technologies in parallel with system architectures advancements

-GE CONFIDENTIAL-

Non-traditional products

Additively-enabled trifurcating heat exchangers

Technology Description

- Compact, low-pressure loss, counterflow HX
- Direct Metal Laser Melting (DMLM) ٠
- Up to **2X power density** of conventional HXs
- GE tri-furcating design enables $\Delta P/P$ of <0.5% ٠
- GE superalloy enables max 900°C / 250 bar ٠
- TRL4 / MRL4 / CRL4 •

Markets

- Aviation: A/C propulsion, environmental cooling
- Power: sCO₂ cycles, nuclear
- Chemical processing •

Opportunities

Seeking partners for government-funded tech maturation opportunities towards commercial scale-up and technology licensing

Trifurcating Unit Cell

Air / sCO2 HX		Conventional	GE Trifurcating
Material		Stainless steel, commercial high temperature alloys	GE AM303
Max Temperature	С	750	900
Power Density	kW/kg	2	4

Successful 2021 subscale tech demo

✓ >200 bar

✓ >900°C

-GE CONFIDENTIAL-

Binderjet Additive Trifurcating Heat Exchangers

Technology Description

- Compact, modular, high temp. HX enables lower cost relative to conventional HXs (PCHEs etc.)
- Binderjet additive **10x faster** than DMLM
- **Trifurcating** geometry → >2X power density • \rightarrow >50% less material, $\Delta P/P$ of ~2%
- SS316L prototype designed for **590°C / 260 bar** ٠ (higher temp alloys possible)
- TRL4 / MRL4 / CRL4 •

Markets

- Aviation: A/C propulsion, environmental cooling
- Power: sCO₂ cycles, nuclear, waste heat rec. etc
- Chemical processing •

Opportunities

Seeking partners for tech maturation • opportunities towards commercial scale-up and technology **licensing**

Printed, de-powdered, & sintered SS316L HX cores

Trifurcating geometry

Representation of fluid flow

sCO ₂ HX	Unit	Leading HX Vendor	GE Technology
Style	-	Diff. Bonded µ-channel	Trifurcating Unit Cell
Material	-	Stainless Steel	SS316L
UA	W/C	1379	2.5e6
Specific Power	kW/kg	2.0	4.3
Power Density	MW/m ³	14	50

-GE CONFIDENTIAL-

Modular assembly of overall HX X-section

Near-Net-Shape Hot Isostatic Press Manufacturing Modality

Technology Description

- Reduced 2~3X volume of material vs wrought
- Reduced machining costs
- Reduce welds & weld repair
- Chemical & structural homogeneity
- Ultrasound inspectability
- TRL5 / MRL5 / CRL3

Markets

- High temperature piping components
- Valve bodies

Opportunities

 Seeking partners for tech maturation opportunities towards commercial scale-up and technology licensing

Net-shape airfoil > 60% \$/kW cost reduction than machining from forging

Net-shape pipe components > 50% \$/kW cost reduction than machining from forging

-GE CONFIDENTIAL-

