gti.

Supercritical CO₂ Power Cycles Symposium San Antonio, TX, USA

Enabling a Low Carbon Future with sCO₂ Power Cycles

22 February 2022

Don Stevenson Vice President & Managing Director Energy Supply & Conversion Gas Technology Institute

GTI: Over 80-year history of turning raw technology into practical energy solutions

Gas Technology Institute

Mission

GTI *solves important energy challenges* worldwide, turning technology and insights into solutions that *create exceptional value* for our customers in natural gas and broader *clean energy systems*.

Objectives

- Expanding supplies of affordable and clean energy
- Ensuring safe, efficient, resilient and reliable energy infrastructure
- Delivering solutions for efficient and environmentally responsible use of energy
- Reducing and managing carbon emissions

gti

 Advancing innovations that protect air, land, water and communities while enhancing economic growth

Dual Imperatives

We must both decarbonize energy systems and supply the energy needed to support economic growth around the world

Global Primary Energy Consumption by Energy Source (2010-2050)

Electricity and heat sector is largest single source of worldwide CO₂ emissions

gti

Source: Greenhouse gas emissions on Climate Watch. Available at https://www.climatewatchdata.org

Why are sCO₂ Power Cycles Important?

sCO₂ offers efficient, compact, scalable, lowwater, low-carbon power generation

- Smaller "footprint" and lower construction costs
- 2-5% point net plant efficiency improvement
- 3-4% reduction in LCOE (Levelized Cost of Electricity \$/kWhr)
- Reduced fuel and water usage
- · Quick response time for load-following
- Reduced emissions

Versatile Technology – Broad Applicability

Concentrated Solar

Waste Heat Recovery

Nuclear

Improve

power plant

efficiency

Quick response

time

Fossil Fuel

Reduce costs.

emissions.

water use

Zero emissions

configurations

Geothermal

Compact: small size turbomachinery

Versatile technology with many applications

Ship-board Propulsion

Supercritical Transformational Electric Power (STEP) Project

Scope: Design, construct, commission, and operate a **10 MWe sCO₂ Pilot Plant Test Facility**

Team:Gas Technology Institute (GTI)
Southwest Research Institute (SwRI)
GE Research (GE)
U.S. Department of Energy (DOE NETL)

Joint Industrial Partners:

Schedule: Three budget phases over seven years (2016–2023)Cost:\$156MM total / \$115MM federal funding

STEP System Objectives

- Advance state of the art for high temperature sCO₂ power cycle performance from TRL 3 to TRL 7
- Demonstrate pathway to efficiency > 50%
- Demonstrate operability at 500°C turbine inlet temperature
- Demonstrate operability >700°C turbine inlet temperature at 10 MWe net power
- Verify system performance and operability
- Facility to be re-configurable to enable new components or technologies

GE Power Softwa

Simple and Recompression Brayton Cycle Testing Planned to Achieve Project Objectives

Main

Comp

Cooler

Cooling

Water

System

Electric

Motor

Information Contained Herein subject to terms of DE-FE0028979

Progress Toward Mechanical Completion

NATIONAL TECHNOLOGY GTI, SWRI

Blue – Received and Set, Green – Received, White – To be delivered Information Contained Herein subject to terms of DE-FE0028979

EΡ

DEMO

Benefits of sCO₂ to Waste Heat Recovery

- ~4,000 TWh of heat are wasted annually worldwide
 - corresponds to CO₂ emissions of 2.8 billion metric tonnes of CO₂*
- sCO₂ power cycles well suited to WHR applications due to small footprint and high conversion efficiency
- Power produced is zero emission (no net new emissions when added to existing industrial or power plant source)

Benefits of sCO₂ for Concentrating Solar Power

- Increases net plant efficiency from 41% to over 50% vs steam-based, molten-salt tower CSP plants
- Smaller size of sCO₂ turbomachinery allows for rapid startup and shutdown
- Reduced component capital costs due smaller footprint
- Increasing heat transport temp from 550°C to 700°C with sCO₂ reduces LCOE by 41%
- Reducing power block cost is a critical element to achieving 6¢/kWhr DOE goal

gti

Summary

- Stated national emissions policies leave a large gap relative to achieving net zero emission goals
- Deployment of new technologies is critical to close this gap
- The cross-cutting nature of sCO₂ power cycles provides maximum benefit to the entire power generation sector
- sCO₂ power cycles can significantly reduce emissions through greater efficiency, improved economics, utilization of waste heat and enabling of renewables
- The 10MWe STEP project provides the necessary demonstration at scale to help realize the commercialization of sCO₂ power cycles

STEP Team @ the sCO2 Symposium

John Marion (GTI): Panel Session I – Status of Technology Maturation Douglas Heim (GTI): Dynamic Modeling for the 10 MWe sCO₂ Test Facility Program (Track 1 Modeling & Control) • **Fuesday** January Smith (SwRI): Supercritical CO₂ Controls Strategies for a Fixed-Speed Recompression Closed Brayton Cycle (Track 1 Modeling & Control) Ganesan Subbaraman (GTI): Panel Session II - Steps to Commercialization Jason Mortzheim (GE): Panel Session II - Steps to Commercialization • John Shingledecker (EPRI): Investigation of Weldment Cracking During Fabrication of a 700°C Fired sCO₂ Heater (Track 1 – Materials) Stefan Cich (SWRI): Aeromechanical Design of a 10 MWe sCO₂ Turbine (Track 1 – Turbomachinery) Mark Winguist (GTI): Combustor for Direct-Fired Supercritical CO₂ cycle (Track 3 – Oxy combustion) Wednesdav Craig Nolan (SwRI): Building a 10 MWe sCO₂ Power Plant: Design Considerations for the DOE STEP Pilot Plant Test Facility (Track 1 – Testing) Jonathan Wade (SwRI): Prediction Methods of Settle Out Conditions and Design in sCO2 Power Cycles (Track 1 - Testing) January Smith (SwRI): Inventory Management Operational Strategies for a 10 MW sCO₂ Power Block (Track 2 – Modeling and Control) STEP Facility Tour at SwRI (1:30 – 4:30pm)

Thank you!

Contact information: dstevenson@gti.energy m: (213) 864-2519 o: (818) 405-9542

16

Turning Raw Technology into Practical Solutions

www.gti.energy | @gastechnology

