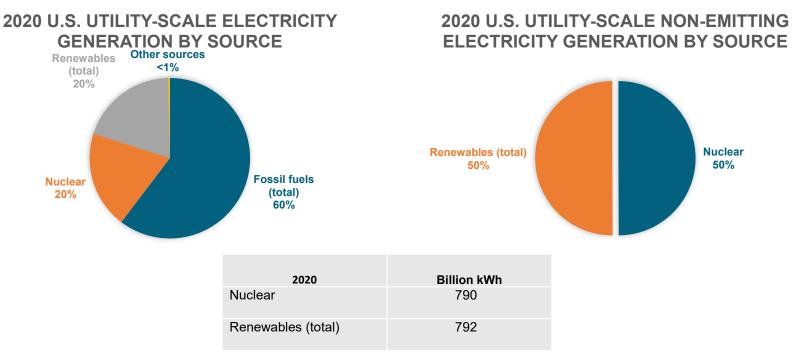
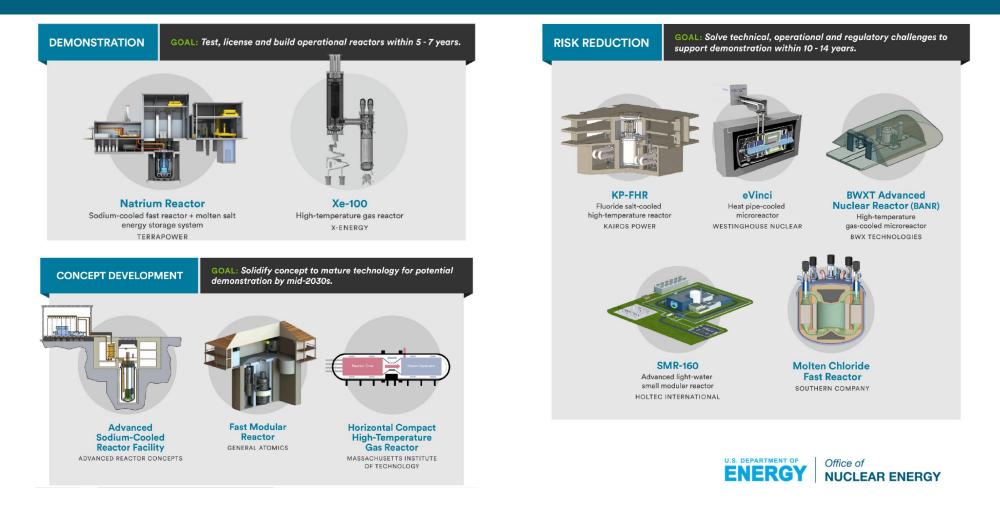
Supercritical Transformational Electrical Production (STEP) R&D: sCO2 Advanced Energy Conversion


Program Overview

Brian K. Robinson

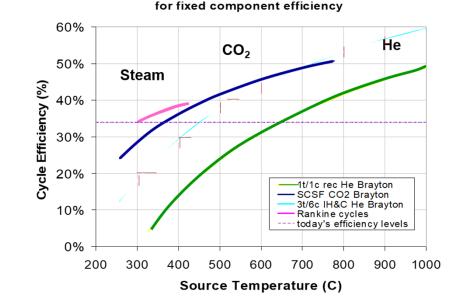
Office of Nuclear Reactor Development Program Manager


Nuclear generation today

Data from EIA – U.S. Electricity generation by energy source

Innovation in Nuclear Advanced Reactor Demonstration Program (ARDP)

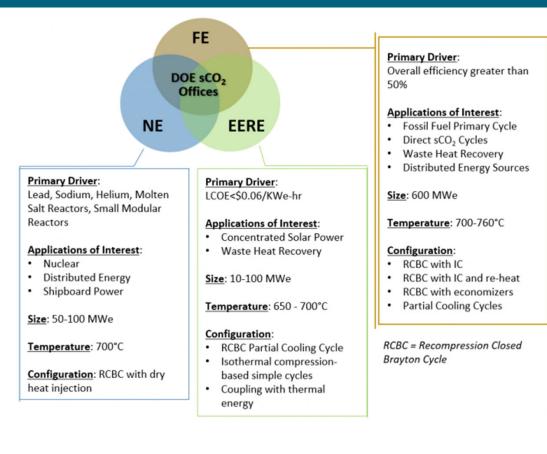
History of NE support


- ARC-20 awards
 - General Atomics
 - ARC LLC.
- NEUPs
 - UW
- SBIRS
 - Advanced supercritical CO2 bearings
 - Advanced supercritical CO2 seals
 - Advanced supercritical CO2 heat exchangers

Advanced Energy Conversion and the sCO2 Brayton Cycle

Benefits of s-CO2 energy conversion technology over competing cycles:

- Smaller size relative to steam system (reduced capital cost)
- Increased efficiency (resulting in increased electricity production for same thermal input)
- Environmental improvement from greenhouse gas reduction
- Vastly reduces water consumption
- Dry cooling/suitable for arid environments

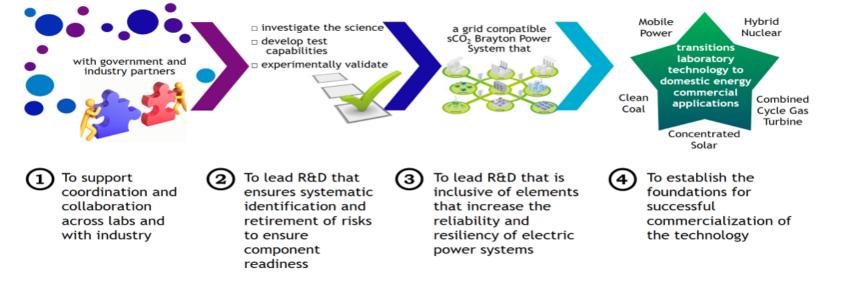

U.S. DEPARTMENT OF

Office of

NUCLEAR ENERGY

Cycle Efficiencies vs Source Temperature

DOE STEP Collaboration Offices and Targets



- The first likely commercial application of sCO2 Brayton cycles will not be nuclear.
- Supporting the development of other applications through collaboration with partners is critical to expedite technology development
- Commercial viability requires a demonstration of performance, operability, reliability, and cost

STEP R&D Mission

Sandia National Laboratories, in collaboration with government and industry partners, shall investigate the science, develop the test capabilities, and experimentally validate a grid compatible sCO2 Brayton Power System that transitions laboratory technologies to domestic energy commercial applications.

U.S. DEPARTMENT OF

IFRG

Office of

NUCLEAR ENERGY

STEP R&D Capabilities

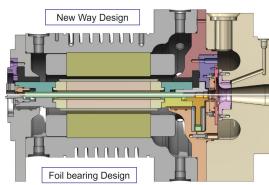
Turbomachinery Development Platform	A reconfigurable testing rig featuring 780 kW of heating power, 560 kW of heat rejection capacity, recuperators, and extensive state of the art data acquisition (DAQ) and controls. The system is rated for 538 °C (1000 °F) and 13.8 MPa (2000 psi) operation	<image/>
Seals Test Rig	The seals test rig has the capability to test seals ranging from 1" to 8" in diameter at 700 °C (1292 °F) and 27.6 MPa (4000 psi)	
Bearings Test Rig	The bearings test rig has the capability to test up to 121°C (250 °F) and 11 MPa (1600 psi) to test a variety of bearing types	
High Pressure Fatigue / Hydrostatic Test Platform	75 ksi hydrostatic and fatigue test facility to measure the mechanical performance of compact heat exchangers and other equipment	
sCO ₂ Visualization Loop	Optical test platform to measure flow and density distributions of sCO ₂ , including Particle Image Velocimetry (PIV)	

sCO2 Brayton Cycle Development (1-10 Mwe)

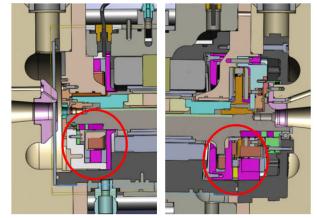
- Testing of turbocompressor for 1MWe system:
- Over 450 operating hours achieved
- Demonstration of off-design performance
- Bearing issues currently being resolved

- New motor controllers to reject power on the grid using 250 kWe turbine alternator compressors
- "off the shelf" component

sCO2 Brayton Cycle Development (>10 Mwe)



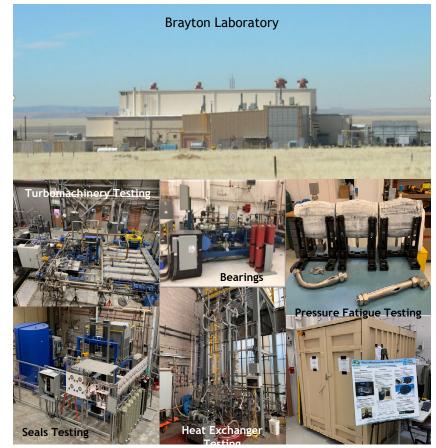
Supercritical CO2 seals test rig 4,000 psi @700C 40,000 rpm


• Shaft size of 10MWe system

Bearing development

- Being tested at kW scale
- Could scale in the future

Re-design of TAC's to use porous media bearings



Re-design of TAC's to use magnetic bearings

Key Accomplishments in Testing and Commercialization

Testing of Turbomachinery, Bearings, Seals, Heat Exchangers, and Pressure Fatigue

Turbocompressor Development:

- Demonstration of blowdown start method: 15 starts performed
- Rotor thrust balance achieved: thrust balance was achieved through valve control strategies
- Limits of SNL loop achieved: Maximum of 1000F @ 2000 psi achieved
- 67.5 hours achieved on unit, 51 hours at limits Max. Speed: 40,000 rpm of loop

Bearings Test Rig:

- Bearings test capability in sCO2 of 40,000 rpm, 1250 psi, and 250°F
- Pressure transducers, RTDs, and thermocouples measure bearing conditions inside motor casing
- Integrated CO2 inventory for flows up to (process conditions)

V PEREGRINE

- SNL purchased the first of a kind sCO2 turbocompressor from PTT in 2017
 - Motorless only known turbo-compressor to be started with a "blowdown method"
- SNL turbomachinery development platform was reconfigured to test turbo-compressor
 - 1 MW electric heating
 - ~500 kW water cooling
- Data Acquisition and Control System
- 465 hours of operation over >70 tests.

FLOWSERVE

SNL and Flowserve CRADA to validate high temperature Dry Gas Liftoff seals. Capabilities:

- Rated Pressure: 4595 psi
- Rated Temp.: 1292°F

CRADA with Vacuum Process resulted in: Manufacturing of PCHE now in U.S., believe resulted in international PCHE vendor price drop

- Versatile SNL test platform design validated for evaluating HX performance characteristics
- Advanced U.S. manufactured compact heat exchanger design & manufacturing
- Positioned to advance industry development of critical sCO2 Bravton power cycle components Capabilities:
- Performance test pressure drop, efficiency, failure modes
- Accommodates 1 in3 to 2 ft3 HXs
- 5-120 gpm flow range
- 100 kWth heating/cooling
- Pressure Fatigue testing (atm. 27.000 psi)

Questions

