

STEP R&D Brayton Cycle Development

R&D Capabilities & Progress

2-3-2022

STEP R&D Capabilities

Turbomachinery Development Platform	A reconfigurable testing rig featuring 780 kW of heating power, 560 kW of heat rejection capacity, recuperators, and extensive state of the art data acquisition (DAQ) and controls. The system is rated for 538 °C (1000 °F) and 13.8 MPa (2000 psi) operation	
Seals Test Rig	The seals test rig has the capability to test seals ranging from 1" to 8" in diameter at 700 °C (1292 °F) and 27.6 MPa (4000 psi)	Seals Testing
Bearings Test Rig	The bearings test rig has the capability to test up to 121°C (250 °F) and 11 MPa (1600 psi) to test a variety of bearing types	Bearings Testing
High Pressure Fatigue / Hydrostatic Test Platform	75 ksi hydrostatic and fatigue test facility to measure the mechanical performance of compact heat exchangers and other equipment	Pressure Fatigue Testin
sCO ₂ Visualization Loop	Optical test platform to measure flow and density distributions of sCO_2 , including Particle Image Velocimetry (PIV)	

Turbomachinery Testing

sCO2 Brayton Cycle Development 1-10 MWe

- Testing of turbocompressor for 1MWe system:
 - Over 450 operating hours achieved
- Demonstration of off-design performance
- Bearing issues currently being resolved

New motor controllers to reject power on the grid using 250 kWe turbine alternator compressors

• "off the shelf" component

2-3-2022

sCO2 Brayton Cycle Development >10 MWe

Supercritical CO2 seals test rig 4,000 psi @700C 40,000 rpm

Shaft size of 10MWe system

Bearing development

- Being tested at kW scale
- Could scale in the future

Re-design of TAC's to use porous media bearings

Re-design of TAC's to use magnetic bearings

Path Forward through Brayton Testing Capabilities

- New Capability: High Temperature/High Pressure test loop being designed
 - Max temperature of **750C**
 - Max pressure of **250 bar**
 - Grid tie capable of handling ~1MWe
 - To be constructed 2022-2024 depending on funding
- Turbomachinery
 - Reconfigure the turbomachinery development platform to test the existing turbine alternator compressor (TAC) coupled to new KEB motor controllers
 - Reconfigure the turbomachinery development platform from simple configuration to RCBC
- Seals
 - Test dry gas liftoff seals
 - Commission a new tester barrel for testing of a new seal technology
- Bearings
 - Test Porous Media and Magnetic Bearings

sCO₂ Brayton Systems Community of Practice

DOE and SNL are launching the **Energy Conversion Collaboration Community (EC³)** Community of Practice to clearly articulate the **value proposition** for Brayton.

Join the conversation to discuss:

- Benefits
 - Efficiency
 - Compact Footprint
 - Water Usage/Cost
 - Clean Energy
- Metrics
 - TRL & MRL
 - LCOE & LACE
 - Cash Flow Analysis

- Market Opportunities
 - Thermal Storage
 - Waste Heat Recovery
 - Combined Heat and Power
- Value and Impact

EC³ Contact: Carmen M. Méndez National Technical Director, STEP R&D <u>cmmende@sandia.gov</u> STEP.sandia.gov BRAYTON.sandia.gov

Questions?