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Abstract: 
In the pursuit of efficient processes and power cycles, operating pressures have reached values 
exceeding the critical thermodynamic pressure in many applications. The Allam cycle (direct-fired 
sCO2 cycle), whose operation is beyond the critical point of CO2, is gaining the attention of 
industry, academia, and governments worldwide due to its remarkable promise of efficiency and 
environmental friendliness, and economical operation. This use of supercritical working fluids 
challenges our current understanding of injection processes and even the notion of 'multiphase' 
itself. We discuss an experimental investigation of injection for direct-fired supercritical CO2 
(sCO2) combustors relevant for the sCO2 Allam cycle. Specifically, we study methane injection 
into a chamber filled with CO2 at various temperatures and subcritical to supercritical pressures. 
Unlike classical fuel injection, the jet has a much lower density than the background fluid. We 
analyze jet spreading and find good agreement with classical jet spreading theories validated for 
dense sprays. Also, we examine other jet flow characteristics of the injected jets pertinent to 
supercritical conditions by using the experiments. 
 
Introduction: 
 
The Allam cycle works in the direction of capturing the CO2 and attaining high thermal efficiencies 
without losing the output power for compression. However, the pressure values are reaching 
beyond the critical pressure of CO2 for generating high thermal efficiencies. For instance, the 
Allam cycle generates higher efficiency with 95% CO2 dilution by working at an optimum pressure 
of 300 bar. Usage of supercritical CO2 (sCO2) power cycle is a new technology to accomplish that 
goal, and recently many fundamental studies were conducted in our lab to address various 
aspects of this cycle [1-24].  
  
Jet mixing is a vital parameter that governs the thermal efficiencies of cycles. Furthermore, it 
characterizes the entrainment of fluid along the length of injection. Nevertheless, it is not being 
thoroughly investigated at these high-pressure values. The benefit of applying the supercritical 
conditions is extended by increasing the dissociation of combustion products. At these 
supercritical conditions, the fluid changes its normal behavior. 
 
There are works in the literature that explain the vital role of jet divergence at subcritical to 
supercritical conditions. The first experimental study on the injection of CO2 into the N2 
environment was reported by Newman and Bruzstowski [25]. The observed widening of jet profile 
and finely atomized spray at supercritical conditions. Author Mayer. et al. In a study [26] injected 
the LOX in gas phase hydrogen at maximum limiting pressure of 100 bar, and temperature 
ranging from 100 K to 370 K. Their results explicitly said that, at supercritical conditions, the jet 
will not be regarded as spray formation; instead, it is fluid/fluid mixing. Chehroudi et al. presented 
their findings [27] on round jet growth rates with the injection of N2, O2, and He into the chamber 



2 
 

with several media including N2, He, and mixtures of O2/ N2 at subcritical to supercritical 
conditions. Furthermore, they added a fluid structure that appeared like a classical liquid jet 
breakup at subcritical thermodynamic conditions. Whereas above critical values atomization is 
inhibited due to the vanishing effect of heat vaporization. The published literature showed that 
CO2 behaves like gas in the subcritical region, whereas, in a supercritical regime, CO2 has a gas 
structure but has a density like liquid. Consequently, the study jet mixing of CO2 and methane is 
considered multiphase mixing.  
  
As operating pressures reach high values, the experimentation becomes more challenging as it 
is costly and time-consuming. In addition, there is less understanding of jet mixing at higher 
thermodynamic conditions. Therefore, the current scenario necessitates the application of a 
simulation tool to simulate similar higher thermodynamic conditions. In the simulation tool, there 
is a requirement for experimental data for validation at such harsh thermodynamic conditions. 
Hence, the present letter reports experiments conducted with a methane injection in a chamber 
filled with CO2 at subcritical to the supercritical environment. The experiments included were 
performed at CO2 pressure ranging from 60 to 200 bar and a temperature of 90 C. 
 
Experimental facility: 
 

 
 

Figure 1: Detailed experimental construction facility  
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Experimental construction adapted in the current study is neatly represented in Fig.1. A similar 
experimental facility is briefly explained in the previous study. The constant volume stainless steel 
cylindrical rig withstands at a maximum bar pressure of 300 bar, enabling experimental 
measurement at the required pressure range. The chamber acquired two optical accesses with 
around 85% transmission for 3.39 μm laser light. They are made up of sapphire material and have 
a diameter of 3 inches. The chamber assembly is covered with an insulation box made up of foam 
material, and the box helped maintain the uniform chamber temperature. Two thermocouples 
were installed on the surface of the chamber to record the temperatures. The temperatures were 
averaged that represents the temperature of the chamber.  
 
Result and Discussion: 
 
The qualitative pictures which exhibit the thermodynamic transformation of injected methane into 
the CO2 environment are illustrated in fig. 2. In fig.2.b injected flow is shown for supercritical 
thermodynamic conditions. In supercritical mixing, it is observed from the image that there is no 
more liquid atomization due to negligible surface tension, which suggests that the fluid behaves 
like a gas and the term liquid is no longer applicable for supercritical flow. As a result, ligament 
formations are considerably reduced. The characteristic disturbances can be seen from the wavy 
surface at the edges. In addition, generally, the liquid vanishes due to domination of the 
evaporation process due to latent heat of vaporization; however, in supercritical mixing, the jet is 
governed by mass diffusion rather than evaporation as the flow is in the gaseous phase. The 
mass diffusion strengthens the shear forces and dominates the capillary forces. Therefore, the jet 
mixing approaches gas/gas mixing at thermodynamic conditions exceeding the critical values. 
 
 
 
                     a) 
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In fig.2.a, visualization of subcritical methane jet injected into subcritical CO2 environment. From 
the phase diagrams, it is seen that both fluids behave like gas. Hence, there will be gas/gas jet 
mixing in the subcritical regime. Similar characteristic features apply to supercritical jet mixing, 
where the diffusion process dominates over evaporation and surface tension vanishes. Although 
jet approaches gas/gas mixing in subcritical and supercritical regimes, the density ratio of the jet 
in supercritical mixing is higher than in subcritical regimes. The reason is attributed to the two-
phase behaviors of the jet in the supercritical regime, as stated previously. A detailed presentation 
of our results will be available in a future publication.  
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