Experiments on Methane Injection Characteristics in Supercritical CO\textsubscript{2} Environment

Ritesh Ghorpade1, Gihun Kim2, Raghu Kancherla1, Daniel Banuti2, Subith S. Vasu1

1University of Central Florida, Orlando, FL 32816
2University of New Mexico, Albuquerque, NM 87131

Abstract:
In the pursuit of efficient processes and power cycles, operating pressures have reached values exceeding the critical thermodynamic pressure in many applications. The Allam cycle (direct-fired sCO\textsubscript{2} cycle), whose operation is beyond the critical point of CO\textsubscript{2}, is gaining the attention of industry, academia, and governments worldwide due to its remarkable promise of efficiency and environmental friendliness, and economical operation. This use of supercritical working fluids challenges our current understanding of injection processes and even the notion of 'multiphase' itself. We discuss an experimental investigation of injection for direct-fired supercritical CO\textsubscript{2} (sCO\textsubscript{2}) combustors relevant for the sCO\textsubscript{2} Allam cycle. Specifically, we study methane injection into a chamber filled with CO\textsubscript{2} at various temperatures and subcritical to supercritical pressures. Unlike classical fuel injection, the jet has a much lower density than the background fluid. We analyze jet spreading and find good agreement with classical jet spreading theories validated for dense sprays. Also, we examine other jet flow characteristics of the injected jets pertinent to supercritical conditions by using the experiments.

Introduction:

The Allam cycle works in the direction of capturing the CO\textsubscript{2} and attaining high thermal efficiencies without losing the output power for compression. However, the pressure values are reaching beyond the critical pressure of CO\textsubscript{2} for generating high thermal efficiencies. For instance, the Allam cycle generates higher efficiency with 95\% CO\textsubscript{2} dilution by working at an optimum pressure of 300 bar. Usage of supercritical CO\textsubscript{2} (sCO\textsubscript{2}) power cycle is a new technology to accomplish that goal, and recently many fundamental studies were conducted in our lab to address various aspects of this cycle [1-24].

Jet mixing is a vital parameter that governs the thermal efficiencies of cycles. Furthermore, it characterizes the entrainment of fluid along the length of injection. Nevertheless, it is not being thoroughly investigated at these high-pressure values. The benefit of applying the supercritical conditions is extended by increasing the dissociation of combustion products. At these supercritical conditions, the fluid changes its normal behavior.

There are works in the literature that explain the vital role of jet divergence at subcritical to supercritical conditions. The first experimental study on the injection of CO\textsubscript{2} into the N\textsubscript{2} environment was reported by Newman and Bruzstowski [25]. The observed widening of jet profile and finely atomized spray at supercritical conditions. Author Mayer. et al. In a study [26] injected the LOX in gas phase hydrogen at maximum limiting pressure of 100 bar, and temperature ranging from 100 K to 370 K. Their results explicitly said that, at supercritical conditions, the jet will not be regarded as spray formation; instead, it is fluid/fluid mixing. Chehroudi et al. presented their findings [27] on round jet growth rates with the injection of N\textsubscript{2}, O\textsubscript{2}, and He into the chamber.
with several media including N₂, He, and mixtures of O₂/ N₂ at subcritical to supercritical conditions. Furthermore, they added a fluid structure that appeared like a classical liquid jet breakup at subcritical thermodynamic conditions. Whereas above critical values atomization is inhibited due to the vanishing effect of heat vaporization. The published literature showed that CO₂ behaves like gas in the subcritical region, whereas, in a supercritical regime, CO₂ has a gas structure but has a density like liquid. Consequently, the study jet mixing of CO₂ and methane is considered multiphase mixing.

As operating pressures reach high values, the experimentation becomes more challenging as it is costly and time-consuming. In addition, there is less understanding of jet mixing at higher thermodynamic conditions. Therefore, the current scenario necessitates the application of a simulation tool to simulate similar higher thermodynamic conditions. In the simulation tool, there is a requirement for experimental data for validation at such harsh thermodynamic conditions. Hence, the present letter reports experiments conducted with a methane injection in a chamber filled with CO₂ at subcritical to the supercritical environment. The experiments included were performed at CO₂ pressure ranging from 60 to 200 bar and a temperature of 90°C.

Experimental facility:

![Figure 1: Detailed experimental construction facility](image)
Experimental construction adapted in the current study is neatly represented in Fig. 1. A similar experimental facility is briefly explained in the previous study. The constant volume stainless steel cylindrical rig withstands at a maximum bar pressure of 300 bar, enabling experimental measurement at the required pressure range. The chamber acquired two optical accesses with around 85% transmission for 3.39 μm laser light. They are made up of sapphire material and have a diameter of 3 inches. The chamber assembly is covered with an insulation box made up of foam material, and the box helped maintain the uniform chamber temperature. Two thermocouples were installed on the surface of the chamber to record the temperatures. The temperatures were averaged that represents the temperature of the chamber.

Result and Discussion:

The qualitative pictures which exhibit the thermodynamic transformation of injected methane into the CO₂ environment are illustrated in fig. 2. In fig. 2.b injected flow is shown for supercritical thermodynamic conditions. In supercritical mixing, it is observed from the image that there is no more liquid atomization due to negligible surface tension, which suggests that the fluid behaves like a gas and the term liquid is no longer applicable for supercritical flow. As a result, ligament formations are considerably reduced. The characteristic disturbances can be seen from the wavy surface at the edges. In addition, generally, the liquid vanishes due to domination of the evaporation process due to latent heat of vaporization; however, in supercritical mixing, the jet is governed by mass diffusion rather than evaporation as the flow is in the gaseous phase. The mass diffusion strengthens the shear forces and dominates the capillary forces. Therefore, the jet mixing approaches gas/gas mixing at thermodynamic conditions exceeding the critical values.
In fig. 2.a, visualization of subcritical methane jet injected into subcritical CO₂ environment. From the phase diagrams, it is seen that both fluids behave like gas. Hence, there will be gas/gas jet mixing in the subcritical regime. Similar characteristic features apply to supercritical jet mixing, where the diffusion process dominates over evaporation and surface tension vanishes. Although jet approaches gas/gas mixing in subcritical and supercritical regimes, the density ratio of the jet in supercritical mixing is higher than in subcritical regimes. The reason is attributed to the two-phase behaviors of the jet in the supercritical regime, as stated previously. A detailed presentation of our results will be available in a future publication.

Acknowledgments:

We acknowledge and thank the department of energy for supporting this work under grant number: DE-FE0025260. Partial financial support is acknowledged from the Office of Naval Research (ONR) under award number N00014-18-1-2362.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

References:

doi:10.1002/kin.21228

doi:10.1115/1.4045195

doi:10.1115/1.4040581

doi:10.1021/acs.jpca.7b09774

doi:10.1021/acs.jpca.8b04501

doi:10.1115/1.4039746

doi:https://doi.org/10.1016/j.jqsrt.2017.11.003

doi:10.1115/1.4039446

doi:10.1115/1.4040904

doi: 10.1115/1.4036254

doi: 10.1021/acs.jpca.7b04897

doi: 10.1115/1.4037579

doi: 10.1115/1.4037458

doi: 10.1021/acs.jpca.6b03242

doi: 10.1021/acs.jpca.6b07257

doi: http://dx.doi.org/10.1016/j.combustflame.2015.11.011

doi: http://dx.doi.org/10.2514/1.49962

doi: 10.2514/3.49962

doi: 10.2514/2.5647