

Silicon Carbide Multilayer Piping for High **Temperature sCO, Brayton Cycle**

Jeff Halfinger – CTP Dr. Farhad Mohammadi – CTP Kristen Frey – CTP

Presenter Jacob Neiderer - Ceramic Tubular Products, LLC. (CTP)

Co-Authors

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Dr. John Podhiny – Materials Research and Design (MR&D) Craig Iwano – Materials Research and Design (MR&D) Dr. Matthew Walker – Sandia National Laboratories

Supercritical CO₂ Power Cycles Symposium

Advanced power-generation systems permit higher turbine inlet temperatures than current systems

- Nuclear Gen IV ($500-900^{\circ}C$)
- Fossil Oxy-fuel (1100°C)
- Solar Gen3 CSP (\geq 700°C)
- Suitable energy conversion systems needed
 - sCO₂ EC systems have been selected as a prime candidate to pair with advanced power-generation systems

Improvements in piping and other supporting components are needed to support sCO₂ EC systems, especially if higher temperatures and pressures are desired

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Introduction

Technology Overview Technology Advancement – Finite Element Model

- Corrosion Testing
 - Overview
 - Results

Summary

Presentation Overview

 Motivation for Piping Advancement Material Characterization • Preliminary Tubular Tests Additional Tubular Tests Results and Conclusions

Motivation for Piping Advancement

- Efficiencies of greater than 50% in sCO₂ can only be achieved at turbine inlet temperatures above 700°C
 - and higher
- Behavior of alloys under sCO₂ conditions and cost/availability
- Increased creep
 - Increased corrosion

Improved cycle performance at high temperatures

– Efficiencies of greater than 55% may be achieved for inlet temperatures of 800°C

"Multilayer" Architecture Pyrolysis (PIP) Hermetic Tough

Technology Overview

- Monolith Silicon Carbide (SiC) – Ceramic Matrix Composite (CMC) SiOC_f/SiOC Filament wound, Polymer Infiltration &
 - Results in a structure that is

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

-Monolithic SiC

Ceramic Composite

Two main areas

- Pipe Size (OD/ID)
- Monolith Thickness
- Composite Layer Thickness
- **Composite Fiber Architecture**
 - Number of Layers _____
 - Wind Angle ____
 - Tension

Laboratories (SNL)

Hexoloy SE

Hexoloy SA

Technology Advancement

- Finite Element Model of Multilayer Tube -Materials Research and Design (MR&D)

 Additional High Temperature (900°C) CO₂ Corrosion Testing – Sandia National

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Maximum Use Temperature

Flexural Strength (MPa) @ Room Temp @ 1450°C @ 1600°C

Density (g/cc)

Apparent Porosity (%)

Modulus of Elasticity (GPa) @20°C @1300°C

Thermal Conductivity (W/mK) @ 1200°C

Coefficient of Thermal Expansion

	1900°C
	280 270 300
	3.05
	5-10
	420 363
2	34.8
	4.02 x 10^-6/°C

Finite Element Model – Material Characterization

- - Materials
 - Fiber Volume Fraction
 - Fiber Interface
 - Fiber Winding Angle
 - Stress State of Monolithic Pipe

Measured Properties Fiber **CMC** Matrix

Micromechanical Predictions

Layup	Measured Modulus	Predicted Modulus	Measured Strength	Predicted Strength
0/90	11.6 MSI	13.6 MSI	19.3 ksi	101.5 ksi
+45/-45	11.1 MSI	13.1 MSI	9.8 ksi	35.2 ksi

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Hoop Stress - Force over area exert circumferentially in both directions on every particle in the cylinder wall Monolithic Tubes & Multilayer Tubes

	Specimen	Layers	Debond Layer	# of Samples	Specimen Length (in.)	Avg. r₀ (in.)	Avg. r ₁ (in.)	Avg. r ₂ (in.)	Avg. Monolith thickness (in.)	Avg. CMC thickness (in.)	Max Pressure (psi)	Max Pressure Std Dev. (psi)	Max Hoop Stress (psi)
Γ	100X2	2	No	3	2 125	0.366	0.499	0.532	0.133	0.033	9081	615	30307
Γ	100D2		Yes	5	J. 120	0.366	0.5	0.535	0.134	0.035	8710	528	28890
	100X4	4	No	5	3.375	0.366	0.499	0.564	0.133	0.065	<mark>8670</mark>	545	28867
	100D4	4	Yes	5		0.365	0.499	0.558	0.134	0.059	9984	374	32955
	100X6	6	No	5	3.625	0.366	0.501	0.589	0.135	0.088	9294	897	30644
	100D6	0	Yes	5		0.368	0.503	0.586	0.135	0.083	9376	619	30924
Γ	Average										<mark>9186</mark>	596	30431
Γ	125D2	2	Yes	5	4.125	0.366	0.627	0.665	0.261	0.038	15316	323	31098
	125X4	4	No	4	4 275	0.365	0.628	0.701	0.263	0.073	14619	590	29502
	125D4	4	Yes	5	4.373	0.365	0.626	0.699	0.261	0.073	16164	379	32788
	125X6	G	No	8	1 605	0.366	0.629	0.733	0.263	0.103	15781	571	31887
Ī	125D6		Yes	5	4.020	0.366	0.63	0.731	0.264	0.101	15793	1401	31902
Ī	Average										15535	653	31435

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Finite Element Model – Preliminary Tubular Tests

11, 01, 6, 8, 1, 9, 5, 7, 8,

Finite Element Model – Additional Tubular Tests

Multilayer Tubes of Various Configurations

- "Standard" Parameters
 - Hoop Fiber Architecture
- **Combined Fiber Architecture** ____
 - **Altered Wind Patterns**
 - **Increased Fiber Tension**
- Increased Monolith Wall Thickness

Monolithic and Composite Only Tubes

• **FEA Simulations**

- simulations
- 10 FEA simulations performed

Updated SiC and CMC elastic properties from prior

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Configuration	Description	Notes on FEA
125NCG-4X21L	1.25" OD Monolith, Nicalon CG, 4 Layers, +/-55° Architecture, 2:1 Wind Pattern, 1 lb Tension	2 FEA cases (with and without pre-stress)
125NCG-4H21L	1.25" OD Monolith, Nicalon CG, 4 Layers, +/-87° Architecture (Hoop Wind), 2:1 Wind Pattern, 1 lb Tension	1 FEA case (with pre-stress)
125NCG-4C21L	1.25" OD Monolith, Nicalon CG, 4 Layers, Combined Architecture ((+/-55°, Hoop (87°), Hoop (87°), 55°)), 2:1 Wind Pattern, 1 lb Tension	Mixed angle design; not analyzed.
125NCG-4X11L	1.25" OD Monolith, Nicalon CG, 4 Layers, +/-55° Architecture, 1:1 Wind Pattern, 1 lb Tension	Same as Tubes 1 and 2 for FEA purposes
125NCG-4X81L	1.25" OD Monolith, Nicalon CG, 4 Layers, +/-55° Architecture, 8:1 Wind Pattern, 1 lb Tension	Same as Tubes 1 and 2 for FEA purposes
125NCG-4X21H	1.25" OD Monolith, Nicalon CG, 4 Layers, +/-55° Architecture, 2:1 Wind Pattern, High Tension (3 lb)	1 FEA case (with pre-strss)
125NCG-4X21L-ND	1.25" OD Monolith, Nicalon CG, 4 Layers, +/-55° Architecture, 2:1 Wind Pattern, 1 lb Tension, No De-Bond Coating	Same as Tubes 1 and 2 for FEA purposes
125NCG-4X21L-COMP	1.25" OD Monolith, Nicalon CG, 4 Layers, +/-55° Architecture, 2:1 Wind Pattern, 1 lb Tension, Composite Only	2 FEA cases (with and without pre-stress)
150NCG-4X21L	1.50" OD Monolith, Nicalon CG, 4 Layers, +/-55° Architecture, 2:1 Wind Pattern, 1 lb Tension	1 FEA case (with pre-stress)
150HEXOLOY	1.50" OD Monolith Only	1 FEA case (without pre-stress)
125HEXOLOY	1.25" OD Monolith Only	1 FEA case (without pre-stress)

11, 01, 6, 8, 2, 9, 5, 9

Finite Element Model – Results and Conclusions

Tested Results vs. Model

pressure

Configuration	Description	# of Samples	Specimen Length (in.)	Avg. r _o (in.)	Avg. r ₁ (in.)	Avg. r ₂ (in.)	Avg. Monolith thickness (in.)	Avg. CMC thickness (in.)	Max Pressure (psi)	Max Pressure Std Dev. (psi)	Max Hoop Stress (psi)	Predicted Max Pressure (psi)	% Difference
125NCG-4X21L	Standard Wind	5	3.6	0.495	0.626	0.69	0.131	0.064	7154	671	31136	7235	1%
125NCG-4H21L	Circumferential Wind	7	3.6	0.494	0.626	0.686	0.132	0.06	6936	437	29816	7633	10.05%
125NCG-4C21L	Combined Wind	7	3.6	0.496	0.626	0.687	0.13	0.061	7158	521	31467		
125NCG-4X11L	1/1 Wind Pattern	3	3.6	0.498	0.626	0.687	0.128	0.061	7112	145	31740		
125NCG-4X81L	1/8 Wind Pattern	3	3.6	0.49	0.626	0.689	0.136	0.064	6649	353	27830		
125NCG-4X11L/4X18L	1/1 & 1/8 Wind Patterns	6	3.6	0.494	0.626	0.688	0.132	0.062	6881	350	29785		
125NCG-4X21H	High Tension Standard Wind	7	3.6	0.496	0.626	0.678	0.13	0.052	7139	318	31345	7436	4.16%
125NCG-4X21L-ND	No-Debond Standard Wind	7	3.6	0.494	0.626	0.687	0.132	0.062	6381	813	27436		
Average									6926	451	30069		
125HEXOLOY	Monolith Only	2	3.1	0.492	0.626	NA	0.134	NA	6799	199	28747	6799	0.01%
125NCG-4X21L-COMP	Composite Only Standard Wind	7	2.1	0.625	0.625	0.689	NA	0.064	1457	150	22473	1270	-12.85%
150NCG-4X21L	Standard Wind - Increased Wall Thickness	3	4.7	0.494	0.755	0.819	0.261	0.064	12371	578	30861	12569	1.60%
150HEXOLOY	Monolith Only - Increased Wall Thickness	1	4.3	0.492	0.753	NA	0.261	NA	7978	X	20089	11913	49.32%
				·		-						-	

^{*} Fiber architecture has a significant effect on CMC strength

Model slightly overpredicted multilayer and composite

Adding CMC to Monolith offers a slight reduction in SiC hoop stress, or equivalently, a slight increase in expected failure pressure

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

ID and OD are the primary parameters that control expected failure pressure Fiber architecture^{*}, wind pattern, and fiber tension have little effect on the expected failure

Tests performed at Sandia National Laboratories (SNL) • Two SiC types both of which are used for multilayer tubes were tested – Hexoloy SE[©] – Hexoloy SA[©] Exposed to industrial-purity CO₂ at 900°C for durations up to 3000 hours Characterization using precision scale and SEM/EDS

Corrosion Testing - Overview

Surface chemistry change Visual Difference hours of exposure

Corrosion Testing – Results

- Hexoloy SE and SA exhibited weight loss, bottoming out around 1000 hours, and rising up and leveling off at 1500 hours

 - Hexoloy SA oxygen concentration increase from 1.4 atom percent (unexposed) to 36 atom percent at 1500 hours of exposure
 - Formation of surface oxide, SiO₂ (silica) EDS
 - Hexoloy SE samples experienced the same oxide growth. Thickness of 2.5-3.0 micrometers at 3000
 - The 7th International Supercritical CO₂ Power Cycles February 21 24, 2022 San Antonio, TX, USA

0 hours

Corrosion Testing – Results (Cont.)

Results mimic those of UW performed using RG and IG CO₂ at lower temperatures

Hypothesized that this weight change is caused by the impurities in either the SiC or CO₂ reacting leading to a weight loss followed by the formation of the SiO₂ layer and weight increase

Nickel-based alloys in CO₂ experience weight gain • SiC has been shown to have excellent chemical compatibility in high temperature CO₂ environments

stress of multilayer tubes

Summary

- Finite Element Model was able to reliably (11%) estimate expected failure pressure and hoop
 - Optimize the component parts of the material system
- Corrosion tests continue to support the chemical combability of SiC in high temperature CO₂
 - Multilayer tubes provide increased creep and corrosion tolerance compared to alloys
- Continued work in areas such as joining, code case development, surface coatings
 - The 7th International Supercritical CO₂ Power Cycles February 21 24, 2022 San Antonio, TX, USA

Questions

Jacob Neiderer – jneiderer@ctp-usa.com Jeff Halfinger – jhalfinger@ctp-usa.com

Finite Element Model – Modeling

Maximum Load Carried by Multilayer Tube Configurations

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Finite Element Model – Failure Characteristics

Circumferential Wind

Combined Wind