

Component Testing of a High Temperature Dry Gas Seal

Jordan Nielson (SwRI) Thomas Kerr (SwRI Benjamin Hellmig (EagleBurgmann) Andreas Fesl (EagleBurgmann) Armin Laxander (EagleBurgmann) Petia Philippi (EagleBurgmann)

Funded by the Department of Energy DE-EE0008740

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

1

Dry Gas Seal Principles

Balance Seal

- Typically made from Elastomers
- Limited to 200°C

Innovation: Improved Efficiency

- Performed a study using a 1-D turbine analysis (Balje Approximation)
- Major Assumption: replace the thermal management zone with extra stages
- Input the new turbine efficiency into a cycle analysis

Ballje Approximation based on Diameter and Speed

Adding additional stages diameter decreases while the speed increases .

Increases isentropic Efficiency 2%Decreases inlet/outlet losses.

Increased stages, increases efficiency

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Balje Approx

Design Requirements/Targets

<u>Requirement</u>	<u>Unit</u>	<u>Value</u>
Temperature	°C	500
Pressure	MPa	7.4
Leakage	NI/min	120
Friction	Ν	1,000
Range of Movement	mm	6.35
(thermal expansion)		
Range of Movement (dynamic oscillations)	μm	50

Test Rig P&ID

Test Rig

Slow Movement (0.25") Fast Movement (Vibration)

Testing Summary

Test Nr	Balance Seal	Balance Sleeve	Backing Seal	Temp	Leakage rating	Force rating
1	Type 1	Sleeve 1	Seal 1	Ambient	1	1
1.1	Type 1	Sleeve 1	Seal 2	Ambient	2	
2	Type 3 D1 M1	Sleeve 2	Seal 1	Ambient	4	2
3	Type 4 D1	Sleeve 2	Seal 1	Ambient	5	4
4	Type 3 D1 M2	Sleeve 2	Seal 1	Ambient	4	3
5	Type 2 D1	Sleeve 1	Seal 1	Ambient	3	3
6	Type 2 D2	Sleeve 1	Seal 1	Ambient	3	3
7	Type 3 D2	Sleeve 1	Seal 1	Ambient	2	2
8	Type 3 D2	Sleeve 2	Seal 1	Ambient	2	2
9	Type 3 D3	Sleeve 2	Seal 1	Ambient	3	3
10	Type 3 D2	Sleeve 1	Seal 2	500C	2	2

Leakage/Force is rated 1-5 where

-1 is the baseline measurement

-3 is between the target and 2X the target,

-5 is greater than 5X

-2 means it meets the target +/- 15% -4 is 2-5X the target

Testing Methodology (Baseline)

EagleBurgmann

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Testing Results (Backing Seal)

The metal Backing seal had 5X the leakage of the baseline elastomer and will be redesigned for the final installation

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Testing Results

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Testing Results (Statistical)

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

11

High Temperature Test Results

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

12

Dynamic Movement Tests

Long Duration

Teardown showed minimal damage to the balance seal

Conclusions

- The team was able to design and test a balance seal capable of 500 C and 7.4 MPa
- The seal was capable of both large and small movement at full pressure meeting the 1,000 N target friction force
- The leakage was below the target of 120 NI/min
- Leakage reduced at high temperature due to CO2 properties

Moving Forward

- The team is currently procuring components for the full Dry Gas Seal and Rotating Test Rig
- The full Dry Gas Seal will be tested under simulated turbine outlet conditions.

Thank you!

Thank you for the support from the DOE DE-EE0008740