

1

Techno-Economic Analysis of a Geothermal sCO2 Thermosiphon Power Plant Jordan Nielson (SwRI) Kelsi Katcher (SwRI) Doug Simkins (Sage Geosystems)

Assumptions

- Heat Transfer occurs between each fluid barrier
- Estimate Geothermal rock temperatures at each depth
- Simulations sets a flow rate and the output is a pressure ratio for the turbine (physical reality is the opposite)
- Dry bulb temperature of 35 C and wet bulb of 21.5 C

Thermosiphon Model

- Discretized Energy Model (forward Stepping)
- Enthalpy: $\Delta H = g\Delta z + Q$

Head

Head

Heat Transfer

Pipe Losses

• Pressure: $\Delta P = \rho g \Delta z - \Delta P_f$

Atrens, Al.; Gurgenci, H.; Rudolph, V. CO₂ Thermosiphon for Competitive Geothermal Power Generation. *Energy Fuels* 2009, *2009*, 553–557

Model Validated With Flow Loop

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

4

Turbine Work and Cooler Duty

• Turbine Work:

 $\dot{W}_{Turbine} = \dot{m} (h_{turbine_{in}} - h_{turbine_{out}})\eta_{turb}$

• Cooler Duty:

Current Study assume 85%

$$\dot{Q}_{Cooler} = \dot{m}(h_{turbine_{out}} - h_{injetion})$$

LCOE Calculation

Results

- Power has a parabolic curve that increases with flow rate until pipe losses become significant
- Max turbine power and net power occur at different flow rates
- Cooling power and parasitic are non-linear but increase with flow rate

Results

- Temperature is parabolic, but the problem is not significantly heat transfer limited
- Turbine inlet pressure decreases with increased mass flow rate due to pipe losses

Results

- Capital cost of the surface equipment is linear and is driven by the cost of cooling equipment
- LCOE is parabolic and has a minimum different than both turbine power and net power

Binary Plant Comparison Differences Smaller well drilling costs Cooler Less downhole pipe costs Surface equipment To Reinjection utilizes a compressor/pump and a heat exchanger \cap Added parasitic cost for compressing the CO₂ at the surface 16.000/14.700 13.375/12.347 0000 13.375/12.347

Formation (Brine/Methane)

Thermosiphon vs. Binary Plant

	Binary Pump	Binary Compressor	Thermosiphon
Turbine Power (kW)	5133	4199	2404
Pump Power (kW)	2503	2678	0
Cooling Duty (kW)	19857	15353	13978
Cooling Parasitic (kW)	839	649	591
Net Power (kW)	1791	872	1813
Compressor/Pump	\$2,000,000	\$650,000	\$ -
Heat Exchanger	\$ 930,008	\$ 678,734	\$ -
Turbine	\$ 1,300,000	\$ 1,300,000	\$ 1,000,000
Cooler	\$ 3,266,519	\$ 2,525,601	\$ 2,299,411
Well	\$ 3,500,000	\$ 3,500,000	\$ 5,500,000
Total	\$ 10,996,527	\$ 8,654,335	\$ 8,799,411
LCOE \$/kW-hr	\$ 0.077	\$ 0.128	\$ 0.062

Alternate Cooling Strategies

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

12

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Alternate Cooling Strategies

	Capital Cost Turbine	Capital Cost Cooling	Capital Cost Well	Total Cost	Net Power (kW)	LCOE/kW- hr
Baseline Thermosiphon	\$ 1,000,000	\$ 2,299,411	\$ 5,500,000	\$ 8,799,411	1,813	\$ 0.062
Absorption Chiller	\$ 1,000,000	\$ 1,500,508	\$ 5,500,000	\$ 8,000,508	1,753	\$ 0.059
Recuperator	\$1,000,000	\$ 2,716,525	\$ 5,500,000	\$ 9,216,525	1,300	\$ 0.091
Absorption/Recuperator	\$ 1,000,000	\$ 1,200,327	\$ 5,500,000	\$ 7,700,327	960	\$ 0.105
Bottoming Cycle	\$ 1,600,000	\$ 4,008,620	\$ 5,500,000	\$11,108,620	1,758	\$ 0.079
Refrigeration Cycle	\$ 1,000,000	\$ 2,098,981	\$ 5,500,000	\$ 8,598,981	1,580	\$ 0.070

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

14

Current Work

- Developed reduced order models to simulate a year long operation with varying ambient conditions
- Identify how the power output changes over the year
- Get a better LCOE estimate and better comparison of different cooling strategies
- Currently working on a turbine design

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Conclusions

- Initial estimates for the geothermal sCO₂ thermosiphon show competitive LCOEs for both renewables and fossil fuels
- Cooling strategies will be (both size and cost) will have a large impact on LCOE
- Binary plants show higher LCOEs but move engineering challenges to the surface compared to downhole.
- Peak turbine power (70 kg/s), peak net power (65 kg/s) and minimum LCOE (60 kg/s) all occur at different flow rates.

Thank you!