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ABSTRACT 
Closed supercritical and transcritical power cycles operating on Carbon Dioxide have proven to 
be a promising technology for power generation and, as such, they are being researched by 
numerous international projects today. Despite the advantageous features of these cycles 
enabling very high efficiencies in intermediate temperature applications, the major shortcoming 
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of the technology is a strong dependence on ambient temperature; in order to perform 
compression near the CO2 critical point (31ºC), low ambient temperatures are needed. This is 
particularly challenging in Concentrated Solar Power applications, typically found in hot, semi-arid 
locations. 
To overcome this limitation, the SCARABEUS project explores the idea of blending raw carbon 
dioxide with small amounts of certain dopants in order to shift the critical temperature of the 
resulting working fluid to higher values, hence enabling gaseous compression near the critical 
point or even liquid compression regardless of a high ambient temperature. Different dopants 
have been studied within the project so far (i.e. C6F6, TiCl4 and SO2) but the final selection will 
have to account for trade-offs between thermodynamic performance, economic metrics and 
system reliability.  
Bearing all this in mind, the present paper deals with the development of a non-physics-based 
model using Artificial Neural Networks (ANN), developed using Matlab’s Deep Learning Toolbox, 
to enable SCARABEUS system optimisation without running the detailed – and extremely time 
consuming – thermal models, developed with Thermoflex and Matlab software. 
In the first part of the paper, the candidate dopants and cycle layouts are presented and 
discussed, and a thorough description of the ANN training methodology is provided, along with 
all the main assumptions and hypothesis made. 
In the second part of the manuscript, results confirms that the ANN is a reliable tool capable of 
successfully reproducing the detailed Thermoflex model, estimating the cycle thermal efficiency 
with a Root Mean Square Error lower than 0.2 percentage points. Furthermore, the great 
advantage of using the Artificial Neural Network proposed is demonstrated by the huge reduction 
in the computational time needed, up to 99% lower than the one consumed by the detailed model. 
Finally, the high flexibility and versatility of the ANN is shown, applying this tool in different 
scenarios and estimating different cycle thermal efficiency for a great variety of boundary 
conditions. 

INTRODUCTION 
sCO2 technology has gained increasing interest among in the scientific community in the last 
twenty years, and is now the focus of several international research projects for very different 
applications, such as Concentrated Solar Power (SCARABEUS [1], COMPASSCO2 [2]), fossil 
fuels (sCO2 flex [3]), heat removal from nuclear plants (sCO2-HeRo [4], sCO2-4-NPP [5]) and 
Waste Heat Recovery (I-ThERM [6] , CO2OLHEAT [7]). Among the virtues of sCO2 power cycles 
stand out their high thermal efficiency, low footprint in comparison to conventional steam and 
gas turbines cycles and operational flexibility [8]. The major drawback of this technology is that 
low ambient temperatures are needed in order to perform compression near the critical point 
(31ºC), thus taking advantage of a low compressibility factor. Nevertheless, this is particularly 
difficult to obtain considering in Concentrated Solar Power (CSP) applications, which are 
typically situated in hot, semi-arid locations. 
An alternative solution to overcome this limitation is proposed by SCARABEUS project, whose 
main concept is to investigate the possibility of blending raw carbon dioxide with certain dopants 
in order to increase the critical temperature of the resulting working fluid, enabling its 
condensation at high ambient temperature and thus enhancing cycle thermal performance. 
Three different dopants have been studied in the framework of SCARABEUS project so far – 
Hexafluorobenzene (C6F6), Titanium tetrachloride (TiCl4) and Sulphur Dioxide (SO2) – and the 
main outcomes regarding the identification of the best performing cycle layout when each one 
of these dopants is employed has been already disclosed in the public domain [9], [10]. 
Nevertheless, the final selection will have to account for trade-offs between thermodynamic 
performance, economic metrics and system reliability: in other words, a thorough overall system 
optimization. 
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System Optimization of power plants is a wide task with multiple scopes, ranging from power 
block thermodynamic Optimization, usually aimed to maximize thermal efficiency, to techno-
economic optimization, with the objective of minimizing the Levelised Cost of Electricity (LCoE) 
of the entire plant. Moreover, other figures of merits such as environmental or social indicators 
can be taken into account besides economic metrics in order to perform a multi-objective 
optimization of the technology (Techno-economic-environmental Optimization).  
Simulation of power cycles operated near the critical point is highly time-consuming. 
Convergence is low due to the extreme non-linearity of fluid properties and heat balances [11]. 
For example, heat exchangers have to be divided in sub-sections in order to account for the high 
variation of heat capacity [12]. Computational time of such systems are in the order of 101 
seconds [13]. An optimization routine to find the set of operational variables maximizing thermal 
efficiency requires around 100 iterations, therefore, 103 seconds for a single operating point 
optimization. Annual calculations require 8760 simulations of more complex models that account 
for off-design performance and operational strategies. This number can be reduced to a few 
hundred by mapping the cycle off-design performance as a function of the ambient temperature, 
HTF temperature and HTF mass flow rate, for example, as requested by System Advisor Model. 
Even if the computational time remains in the order of 101 seconds (although it is very likely to 
grow due to the increase in the number of nested iteration loops), a single yearly simulation 
would last 103-104 seconds. What is more, different configurations –in the order of thousands 
[14]- have to be studied in order to minimize the LCoE. If multiple objective functions were to be 
considered, generating the Pareto Front would require the use of Metaheuristic Algorithms (e.g., 
genetic algorithms) and between 5000 and 10000 yearly simulations. In summary, directly 
optimizing the detailed model leads to prohibitive simulation times.  
Bearing all this in mind, the present manuscript deals with the creation and development of a 
surrogate model based on Artificial Neural Networks, which enables to reduce the optimization 
time by various orders of magnitude [14]–[16]. In this context, it is worth noting the novelty of the 
proposed approach, which results to be different from other similar investigations published in 
literature. In [17], [18] the authors studied the Recompression Cycle with sCO2 for nuclear 
applications. In these studies, a Parametric Optimization is performed, meaning that the system 
has been first directly optimized by means of a Genetic Algorithm for different conditions and the 
results of such optimization constitutes the training set provided to the Neural Network. In the 
present work, the ANN will completely replace the detailed model and the optimization will be 
performed over the ANN and not on the detailed model. A similar investigation is presented in 
of [19], where a Neural Network is trained with data obtained with a detailed model for different 
boundary conditions. Nevertheless, the system thereby studied was a Recuperated Rankine 
Cycle for low-grade Waste Heat Recovery (TIT < 100ºC) running on different working fluids. 
Thus, to the authors knowledge, this is the first time that ANNs are used as surrogate models 
for the optimization of CO2-based power cycles for Concentrated Solar Power applications. 
The structure of the manuscript is the following: the first part introduces three dopants studied 
within the SCARABEUS project, namely C6F6, TiCl4 and SO2, along with a brief discussion on 
the best-performing cycle layout for each working fluid. The second part deals with the 
development of a comprehensive methodology for the optimization of complex, time-consuming 
energy models using ANN and applies it to the analysis of sCO2-based power cycles. The 
computational time invested in generating the training set and training the surrogate model is 
compensated with extreme flexibility. Finally, the results obtained with the ANN are compared 
with the ones achieved by the detailed model, developed with the commercial software 
Thermoflex, showing the reliability of the proposed ANN, which is proven to be capable of 
reproducing the results of the detailed model with a great accuracy but with an extremely lower 
computational time needed.  
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CANDIDATE DOPANTS 
As previously commented in the introduction, three different candidate dopants are considered 
in this work - C6F6, TiCl4 and SO2 – and their main thermophysical properties are provided in 
Table 1. It can be easily noticed that the critical temperatures of these compounds are 
considerably higher than the one of pure CO2 (186ºC for C6F6, 190ºC for TiCl4 and 64ºC for 
SO2), being this the key feature that enables condensation of the resulting mixtures at 
temperatures equal or higher than 50ºC. A discussion regarding the safety issues related to 
these dopants, based on the NFPA 704 standards, can be found in previous papers by the same 
authors [9]. A special comment must be made on dopant thermal stability, currently being 
investigated by other partners of SCARABEUS consortium (University of Brescia and Politecnico 
di Milano). The complete set of results of this research activity will be disclosed in the near future 
by these institutions and cannot be hereby discussed due to confidentiality issue, but the main 
conclusions are presented in Table 1. On one hand, very promising results have been obtained 
for TiCL4, for which thermal degradation is observed only for temperatures above 700ºC. Almost 
no preliminary results have been obtained for CO2 and SO2, which are currently being tested, 
but different references from literature depict a very promising scenario, with foreseen thermal 
stability for temperatures higher than 700ºC [20]. On the other hand, the same cannot be said 
for C6F6, which shows some signs of thermal degradation for temperatures above 600/625ºC. 
Nevertheless, it is worth noting that this is merely a preliminary results and this threshold value 
needs further investigation to be confirmed. For this reason, in the present paper TIT values 
higher than 625ºC are taken into account, in order not to limit the analysis and compare the ANN 
reliability when employed to foresee the thermal performance obtained with the three dopants 
with the same set of boundary conditions. Nonetheless, if C6F6 thermal stability will be confirmed 
to be limited to 625ºC, this would be the maximum TIT level to be considered for techno-
economic optimization, and this would undoubtedly be an important drawback for this dopant. 

Table 1. Thermo-physical properties of pure CO2, C6F6, TiCl4 and SO2 

 CO2 C6F6 TiCl4 SO2 

MW [kg/kmol] 44.01 186.06 189.69 64.06 

Tcr [ºC] 31.06 243.58 364.85 157.60 

Pcr [bar] 73.83 32.73 46.61 78.84 

Thermal stability Up to 700ºC Up to 625ºC >700ºC >700ºC 

BIP - 0.16297 - 0.0003951·T 0.0704 0.0242 

Thermo-physical properties of the mixtures have been obtained with Aspen v11 [21], employing 
Peng-Robinson’s Equation of State with Van der Walls mixing rule. The binary interaction 
parameters (BIP, see last row in Table 1). have been calibrated on experimental data available 
in Aspen library. Further information regarding properties estimation can be found in previous 
papers by SCARABEUS Consortium [9], [22], [23] . The critical loci of the three mixtures are 
presented in Figure 1, highlighting the range of molar fraction of dopant employed in the present 
study: 10%-20% for C6F6, 15%-25% for TiCl4 and 20-40% for SO2. These candidate ranges of 
dopant molar fraction were identified in previous works by the authors, and are based on a 
twofold criterion: i) maximize cycle thermal efficiency, ii) guarantee a gap in the order of 30ºC 
between minimum cycle temperature and mixture critical temperature, in order not to operate 
compression in the extreme vicinity of the critical point.   
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Figure 1. Critical Loci of SCARABEUS mixtures. Candidate ranges of dopant molar fraction are indicated by markers. 

CANDIDATE CYCLE LAYOUTS 
Three different candidate cycles are considered for SCARABEUS mixtures, previously identified 
in a work by the authors by means of a thorough screening of sCO2 cycle layout proposed in 
literature [10]: the simple recuperated (hereby called Recuperated Rankine), the 
Precompression and the Recompression cycle, whose layouts are presented in Figure 2. For 
the three dopants considered, the optimum combinations of cycle layout and working fluid, as 
identified in previous works for a minimum cycle temperature of 50ºC (SCARABEUS reference 
case), are: Precompression with 15% molar fraction of C6F6, Recuperated Rankine with 15% of 
TiCl4 and Recompression with 30% of SO2. 
Interestingly, these three configurations were originally proposed by Gianfranco Angelino in its 
seminal work [24]–[26], in a very similar transcritical embodiment as the one considered in the 
present work. The transcritical nature of SCARABEUS cycles, to which from now on we will add 
the adjective "transcritical" to differentiate them from the typical supercritical embodiment of pure 
CO2 cycles, is due to the fact that the addition of certain dopants enables the condensation of 
the working fluid for temperature levels higher than 31ºC (critical temperature of CO2). This fact, 
besides the obvious need for a main pump and a condenser instead of a main compressor and 
cooler, leads to an extremely interesting side-effect: in transcritical cycles, the main pump inlet 
pressure is no longer a free/optimizable parameter, but it is constrained by the minimum cycle 
temperature through the bubble point (condensation process). Actually, the condensing pressure 
can indeed be changed by means of an innovative degree of freedom - the molar fraction of 
dopant – but at the expense of considering different thermodynamic behavior of the mixture and, 
from a practical point of view, changing the working fluid. On the contrary, for supercritical cycles, 
that pressure level is a further degree of freedom for optimization, which allows to change the 
heat capacity of the low pressure stream – in order to balance the heat capacities in the heat 
regeneration - at the expense of penalizing specific work.  
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Figure 2. Candidate cycles for SCARABEUS concept 

Bearing this in mind, the same cycle layout can behave in a very dissimilar way depending if it 
is considered in a transcritical or supercritical embodiment. In order to fully appreciate these 
different behaviors, a series of crucial cycle parameters which plays a fundamental role in its 
thermodynamic optimization are hereby identified and discussed, and their effects are resumed 
in Table 2. It is worth remarking the fact that these parameters will be part of the complete set 
of input variables considered in the ANN (see next sections of the paper).  
The Main Compressor Inlet Pressure allows to change the proximity to the critical point in 
supercritical power cycles. This allows to balance the benefits (low compressibility factor, higher 
Pressure Ratio) and disadvantages (irreversibilities in the heat regeneration) of working near the 
critical point. In transcritical cycles, this pressure level is fixed by the cycle temperature through 
the bubble point. The molar composition has a similar but conceptually different impact: instead 
of varying main pump inlet conditions, it allows to shift the critical point itself. Additionally, 
different composition of the same dopant has different condensing pressure for the same bubble 
temperature, thus having an effect on the Pressure Ratio. The split-compression works similarly 
in both transcritical and supercritical cycles: at the expense of a lower specific work, the heat 
regeneration is improved by reducing the heat capacity of the high pressure stream. The addition 
of a Pre-compressor in transcritical configurations permits to overcome the limitation imposed 
by pump inlet pressure on turbine exhaust, hence increasing cycle specific work. On the 
contrary, in supercritical configurations, this cycle modification causes a rise in main compressor 
inlet pressure, resulting in an enhanced heat recuperation process (balancing heat capacities, 
reducing internal irreversibilities). This leads to a rise in cycle thermal efficiency, but with an 
overall detrimental effect in terms of specific work. In fact, the direct consequence is that main 
compressor inlet is shifted away from the critical point, resulting in a significant rise in 
compression power. Finally, the effect of Maximum Cycle Pressure is very similar for both 
transcritical and supercritical embodiments, and can be optimized in order to maximize either 
thermal efficiency or specific work.  
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Table 2. Comparison between the degrees of freedom of transcritical and supercritical power cycles 

 Transcritical Supercritical 

Main Compressor 
(Pump) Inlet 
pressure 

Set by Minimum Cycle 
Temperature through the bubble 
point (condensation process). 

Further degree of freedom: 
compromise between cycle 
specific work and recuperator 
performance  

Molar 
Composition 

Shift in critical point of mixture: 
affects to both thermo-dynamic 
props and pump inlet pressure 

Only pure fluids are considered 
for supercritical cycles. 

Split compression 
factor 

Improves internal heat recovery 
and harms specific work. 

Improves internal heat recovery 
and harms specific work. 

Precompressor 
pressure ratio 

Overcomes the limitation on 
turbine exhaust pressure, 
increasing both thermal 
efficiency and specific work. 

Beneficial effect on thermal 
efficiency, detrimental for 
specific work 

Maximum Cycle 
Pressure 

Affects specific work and 
available energy for 
regeneration at turbine exhaust 

Affects specific work and 
available energy for 
regeneration at turbine exhaust 

 
COMPUTATIONAL ENVIRONMENT 
In order to allow an easier combination with the ANN, cycle simulations have been completed 
with various in-house codes written in Matlab R2021a [27], thoroughly validated with the results 
obtained with Thermoflex [28] and already presented in previous works by the same authors [9], 
[10]. As afore-commented, the layouts considered for transcritical power cycles (i.e., 
SCARABEUS working fluids) are the Recuperated Rankine Cycle, Transcritical Precompression 
Cycle and the Transcritical Recompression Cycle. Moreover, two well-known pure sCO2 cycles 
have also been studied for sake of comparison: Recompression Cycle and Partial Cooling Cycle, 
considered as representative for pure sCO2 technology. The same set of boundary conditions 
has been employed for both pure and blended configurations, and it is hereby provided in Table 
3. On the other hand, different values of Turbine Inlet Temperature, Minimum Cycle Temperature 
and Maximum Cycle Pressure are taken into account, as specified in Table 4.  

Table 3. Complete set of fixed boundary conditions 

Gross 
Output [MW] 

ηis,T [%] ηis,C [%] ηis,P [%] 

100 93 89 88 
    

ΔTmin [ºC] ΔPPHX [%] ΔPHRU [%] ΔPREC [%] low/high P side 
5 1.5 1.0 1.0/1.5 

 
Thermodynamic properties of the candidate blends, previously obtained with Aspen software, 
have been introduced in Matlab codes by means of look-up tables for fixed molar compositions: 
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for C6F6, dopant molar fractions from 10-20% with a step of 1%; for TiCl4, from 15-25% with 1% 
step; and for SO2 from 20-40% with 2% step.      

 
ARTIFICIAL NEURAL NETWORK  
Artificial Neural Networks have been modelled using Matlab’s Deep Learning Toolbox [29]. The 
training set have been generated using the Matlab codes. The ranges of the various parameters 
sampled for the generation of the training sets are shown in Table 4. Minimum Cycle 
Temperature accounts for different locations (ambient temperature) from mild (35ºC, lower 
bound) to hot (60ºC, upper bound) climates. Turbine Inlet Temperature refers to both state-of-
the-art of CSP plant (550ºC, lower bound) as well as advanced CSP receiver temperatures 
(700ºC, upper bound). Maximum Cycle Pressure stands as a technological boundary condition 
for current materials (250 bar, lower bound) and advanced material constraints (350 bar, upper 
bound).  The remaining ANN training set limitations (e.g. Precompressor pressure ratio, split flow 
factor1 etc.) have been fixed considering the results obtained in previous research activities by 
the authors [9].  

Table 4. Ranges of the various parameters sampled during the generation of the ANN training sets  

 Lower 
bound 

Upper 
bound System 

Minimum Cycle 
Temperature [ºC] 35 60 All 

Turbine Inlet Temperature 
[ºC] 550 800 All 

Maximum Cycle Pressure 
[bar] 250 350 All 

Molar fraction C6F6 [%] 10 20 Transcritical Precompression  
with CO2-C6F6 

Molar fraction TiCl4 [%] 15 25 Recuperated Rankine with CO2-TiCl4 

Molar fraction SO2 [%] 20 40 Transcritical Recompression  
with CO2-SO2 

Precompressor PR [-] 1.0 1.6 Transcritical Precompression  
with CO2-C6F6 

Split-flow factor [-] 0 0.6 Transcritical Recompression  
with CO2-SO2 

Main Compressor PR [-] 1.5 4 sCO2 Recompression / Partial Cooling 

Precompressor PR [-] 1.0 2.5 sCO2 Partial Cooling  

Split-flow factor [-] 0 0.6 sCO2 Recompression  

                                                      
1 Note that split-flow factor of a Recompression cycle (either transcritical or supercritical) refers to the 
fraction of working fluid that flows through the re-compressor. Thus, if this value is set to zero, the 
Recompression cycle is practically transformed into a Simple recuperated cycle. 
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An Artificial Neural Network (also called Neural Network, ANN) is a mathematical model inspired 
by the working of a biological brain. A brain is built form a massive number (more than 1011) of 
interconnected units called neurons. The resulting structure is both capable of storing and 
processing information. To that end, the brain modified the arrangement of the neurons 
(connections can grow) and the strength of these links (called synapses). ANN cannot achieve 
such complexity but it resembles some of its key operating principles: (1) they are formed by a 
large number of simple units, (2) they can learn from the environment, and (3) the knowledge 
can be stored inside the network by modifying the weights of the connections. Artificial Neural 
Networks can be used in a broad range of applications fields from engineering to finance or even 
literature [30]. In this work, ANN are used to replicate the behavior of a physical model. This 
problem is called function approximation, meaning that the ANN is asked to create a mapping 
between the inputs and the targets, identifying the hidden dynamics underlying between them 
[31]. 
The fundamental unit of an ANN is the neuron (Figure 3). It is a mathematical element that 
receives, processes and transfers information. More specifically, it collects a vector of I inputs 
(x) and transforms it into the scalar y. To do so, neurons count on three elements. The synaptic 
connections collect all inputs and assign a weight to each one of them; the Adder sums up the 
weighted inputs and then add a threshold value called bias; and, finally, a Transfer (activation) 
function that transforms the output from the adder into the output of the neuron.  The transfer 
function is chosen depending on the problem that wants to be solved, it can either be linear/non-
linear or discrete/continuous. The most important types are Threshold Functions (not used in 
function approximation but for pattern recognition), Linear Functions (the output is equal to the 
input) and Sigmoid Functions (S-shaped functions with two horizontal asymptotes).    
 

 
Figure 3. Neuron scheme 

Neural Network consists of multiple neurons connected between them. Neurons are organized 
in parallel forming a layer, while layers are arranged in series giving place to the network. Three 
types of layers are identified: Input layer, which does not transform the information in any way 
but distributes into the network; the Output layer, which produces the output of the network; and 
the Hidden layer(s), which are found between the Input and Output layers and are actually 
responsible of the computational power of ANN. The type of Neural Network studied for function 
approximation problems is the Multilayer Feedforwards Network. In this configuration, the 
information flows only in one direction, from the input layer to the output layer through the hidden 
layer(s). Moreover, the network will be fully-connected, meaning that the output from all the 
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neurons of a layer are the inputs of the neurons of the consecutive layer. Figure 4 shows a 
Neural Network as described before with two hidden layers and only one output. 

 
Figure 4. Multilayer Feedforward Neural Network, with two hidden layers and one output 

The Universal Approximation Theorem [30] (pag. 230-231) states that a Multilayer Feedforward 
Network with at least one hidden layer with a sigmoid function as transfer function and an output 
layer with a linear function is a universal approximator. This means that an ANN of that 
characteristics is potentially able to approximate any continuous function. This theorem provides 
the mathematical justification that the present problem we are trying to solve does actually have 
a solution. However, the path for obtaining that solution is far from being trivial. The process by 
which a network adjusts its free parameters to improve its performance is called Training and, 
as described below, it is something much broader than using a training algorithm.  
The free parameters of a neural network correspond to the weights and biases of each neuron. 
Considered a network of I neurons in the input layers, h hidden layers with Hi neurons in the 
hidden layer i and only one output. The total number of free parameters, n, is expressed in 
Equation 1. The first term corresponds to the number of biases (equal to the total number of 
neurons except from the neurons in the input layer). The second term is the number of synaptic 
connections: I·H1 are the connections from the input layer to the first hidden layer, Hh are the 
connections from the last hidden layer to the single neuron in the output layer and the last term 
are the connections between the remaining hidden layers.  

𝑛𝑛 = ��𝐻𝐻𝐻𝐻 + 1
ℎ

1

� + �𝐼𝐼 · 𝐻𝐻1 + 𝐻𝐻ℎ + �𝐻𝐻𝑖𝑖 · 𝐻𝐻𝑖𝑖−1

ℎ−1

2

�                                         (𝐸𝐸𝐸𝐸. 1) 

 
A standardized methodology to train ANN cannot be found among the scientific literature. In this 
work, a comprehensive methodology is proposed, gathering multiple parameters the designer 
has to consider to properly trained (i.e. maximize the performance) an ANN.  
The authors have identified the followings: 

• Sampling method and sampling size. 
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• Number of hidden layers and neurons in each layer (ANN architecture). 

• Transfer function in the hidden layer. 

• Normalization method of the data in the training set. 

• Figure of merit employed to quantify the performance. 

• Training algorithm. 

• Data division. 

• Number of re-trainings. 
A sufficiently large set of simulations have to be provided to the network so it can learn the 
underlying dynamics between input and targets. Sampling of the detailed model is the high time-
consuming task of the optimization using ANN, therefore only the minimum number of simulation 
should be performed. To that purpose, the input domain should be optimally sampled in order to 
maximize the information contained in the training set. In this work, the simple Uniform Random 
Sampling (or Montecarlo Sampling) is employed. Other methods include the Systematic 
Sampling or the Latin-Hypercube Sampling [32]. The main advantage of the selected method is 
its modularity: as each sample is chosen independently from each other, the sampling size can 
be progressively increased in order to find the minimum amount that yields a certain level of 
error. The superiority of the Latin-Hypercube Sampling is not clear because, although it 
guarantees one-dimensional projection properties, the sample does not have to be uniformly 
distributed through the n-dimensional space. For its part, the Systematic Sampling do ensure a 
space-filled sample, but not one-dimensional projection.  
Regarding the architecture of the ANN, it can only be chosen by means of a sensitivity analysis. 
A Shallow Neural Network (i.e. one hidden layer) should always be studied first. If the error 
required cannot be achieved by such network, Deep Neural Network with two hidden layers are 
to be considered. More than two hidden layers are hardly ever necessary. It has to be pointed 
out that the training time scales exponentially with the number of hidden layers, as well as the 
risk of overfitting the data. In this study, constant architecture sizes are tested, acknowledging 
that small variations in the number of neurons have little impact on the performance of the 
network [33]. Some authors have also performed a sensitivity to the transfer function used in the 
hidden layers. However, the hyperbolic tangent sigmoid function is one of the most used in 
recent literature publications [16], [34]–[36]. 
Data can rather be provided to the network in its original units or be normalized to ease the 
training process. Two normalization method are discussed in literature: the [-1,1] normalization 
and the [0 mean, 1 variance] normalization [31]. The idea behind normalization is to move the 
range of the data closer to the region in which the sigmoid functions are not saturated (usually 
between -3 and 3), so the gradients in the first iterations of the training are significant from the 
very beginning. Normalization is a standardized practices and the [-1,1] normalization will be 
applied in this work.   
Several different figures of merit exist for measuring the performance of the trained Network. 
Some examples are the Mean Square Error (MSE), the Root Mean Square Error (RMSE), the 
Mean Percentage Error (MPE), the Mean Absolute Percentage Error (MAPE), the Coefficient of 
Variation (CoV) or the Coefficient of Determination (R2). There is no a uniform preference in 
literature, for each one measures different aspect of the performance. In this study, the RMSE 
is selected because it is measured in the original units of the target, thus representative of the 
uncertainty predictions of the surrogate model. RMSE can be calculated according to Equation 
2, where n is the total number of samples, t is the target shown to the network and y is the value 
predicted by the network. 
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𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =  �
1
𝑛𝑛
�(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

                                                             (𝐸𝐸𝐸𝐸. 2) 

Once the previous information has been selected, the training process consists in finding the 
optimum values for the weights and biases so the error between targets and predicted outputs 
is minimized. Training an ANN is far from being a deterministic process. On the contrary, the 
free parameters of the network are initialized randomly. The two most employed training 
algorithm are the Levenberg-Marquardt and the Bayesian Regularization, which are both a 
Backpropagation algorithm based on the Newton’s Method but with different stopping criteria 
[31]. The former is based on early-stopping, meaning that a set different from the training and 
test (called validation set) is used to stop the training process before the network starts to overfit 
(i.e., memorize the patterns instead of learning the relations between them) the data. In the latter, 
the definition of the performance function is changed to penalize the complexity of the network 
(i.e. the amount of free parameters employed). The advantage of the Bayesian Regularization 
is that it only uses as many free parameters as necessary, no matter if the architecture of the 
network is more complex. On the other hand, the Levenberg-Marquardt algorithm is significantly 
faster, therefore suitable for extensive sensitivity analysis.  
The full data set has to be divided in, at least, two sets: a training set and a test set. The former 
is used during the training to adjust the free parameters of the net, whereas the latter is employed 
to assess the performance of the trained net, thus to evaluate its generalization capability (i.e. 
ability to produce outputs with a good resemblance to the real model for inputs that have not 
been shown during training). If the Levenberg-Marquardt algorithm is selected, the 
aforementioned validation set is also required. Ideally, all data sets should be statistically 
representative of the whole space explored. Otherwise, the training can be inefficient in the 
sense that the network is not shown the complete picture of the system dynamics- thus it is not 
able to generalize well, or, on the other hand, the test error could be over or under-estimated as 
a result of there being more points in the test data from a region which is easy or harder to 
predict.  Additionally, this problem can also occur if the test set is too short. A well trained network 
has a test error usually higher than the train error, both decreasing during the training process. 
Two decisions have to be made in this stage: the percentages designated to each set and which 
particular simulations will conform them. If the number of samples is sufficiently high, then 
randomly dividing the data can be assumed to maintain the statistical representativeness of the 
data. An alternative is to individually select a sampling for the test set (and validation) following 
any of the sampling methods mentioned before. In this work, the training algorithm is the 
Levenberg-Marquardt with a 70/15/15% division between train, validation and test sets, 
respectively, as widely employed in literature [34], [36]–[38]. However, future works have to focus 
in quantifying how this critical step, along with the sampling method, affect the minimum number 
of samples required for achieving a certain level of accuracy. 
Training of an Artificial Neural Network is nothing more but an optimization problem. 
Nevertheless, given that the error function is extremely non-linear, the solution achieved during 
training will probably be a local optimum. To avoid falling in local optima, it is recommended to 
repeat the training process a sufficient number of times. Some comments have to be made about 
re-training. First, some criteria are needed to choose among the multiple networks. The network 
with the lowest train set error (global optimum) cannot be selected because it will probably overfit 
the data (have a large error in the test set). Consequently, in this work, the trained net with the 
lesser test error is selected, always provided that it is larger than the total error. Secondly, as it 
cannot be guaranteed that the test set is statistically representative of the design space, there is 
a risk, if the number of re-trainings is too large, of accidentally selecting a solution that overfits 
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both the train and test sets, this problem is called overfitting due to model selection [39].  After 
some sensitivity studies, a number of 25 re-trainings have been chosen as a trade-off between 
finding a good local optimum and avoiding overfitting. Nevertheless, this is not a golden rule and 
do not exempt the designer of manually assessing the obtained network.  
Finally, it is worth remarking that the optimum values for the weights and biases do not depend 
on the training algorithm chosen, neither the number of re-training, nor the training set, nor the 
normalization method. These parameters affect how closely (and consistently) the solution found 
during training resembles the global optimum, but the potential performance of the ANN as a 
surrogate model only depends on the number of hidden layers and neurons and the activation 
function selected (which defines the mathematical description of the ANN).  
All design criteria has been summarized in Table 5. 

Table 5. Decision parameters and its corresponding value 

Decision parameter Value 

Sampling Method Uniform Random 
Sampling 

Sampling size Sensitivity 

Network architecture Sensitivity 

Hidden layer transfer 
function Hyperbolic Tangent 

Normalization Method [-1,1] 

Error measure RMSE 

Training algorithm Levenberg-
Marquardt 

Data division (train, 
validation, test sets) 

Random, 
70/15/15% 

Retraining 25 

 

RESULTS AND DISCUSSION 
As already commented in the previous section, five different systems have been investigated: 
Transcritical Precompression Cycle with CO2-C6F6 (from now on, PrC CO2-C6F6), Recuperated 
Rankine Cycle with CO2-TiCl4 (RR CO2-TiCl4), Transcritical Recompression Cycle with CO2-SO2 
(RC CO2-SO2), Recompression Cycle with sCO2 (RC sCO2) and Partial Cooling Cycle with sCO2 
(PC sCO2). A sample of 5000 input combinations have been randomly generated within the limits 
indicated in Table 4. Afterwards, the 5000-elements sample have been simulated in Matlab to 
produce the corresponding thermal efficiency, which will be the target of the Neural Networks.  
A sensitivity to the architecture of the ANN has been then performed. Shallow Neural Networks 
with 5, 10, 20, 30, 40 and 50 neurons in the hidden layer have been studied. Deep Neural 
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Networks with two hidden layers were also explored but dismissed in all five cases because they 
do not cause any significant improvement in the RMSE and/or produce overfitting of the data. 
For each pair of system and architecture, the number of free parameters is different as it depends 
on the number of inputs (see Equation 1). The selection of the best architecture has been made 
balancing both RMSE and cycle complexity, for a network with too many free parameters could 
not generalize well. Results are shown in Table 6, where the selected network architecture have 
been remarked in bold. The optimum number of neurons for the PrC CO2-C6F6, RR CO2-TiCl4 
and RC CO2-SO2 are 5, 5 and 20 respectively. This fact provides a preliminary information 
regarding the complexity of each SCARABEUS systems, being the Transcritical Recompression 
the most challenging layout for a ANN to reproduce. Indeed, the RC and PC with sCO2 cases 
seems to be harder to replicate using ANN, given that a total of 30 hidden neurons are required 
to obtain a similar RMSE. It is worth remarking that this comparison, based only on the RMSE 
of the test set of the various systems, must be considered as a purely qualitative – but useful – 
observation, and that cannot be employed as unique indicator of the complexity of the different 
systems because it is influenced by a large extend by the data division performed to each training 
set. 

Table 6. Sensitivity analysis to ANN architecture for a 5000-simulations sample. Values in the table indicate the 
RMSE [%] of the test set 

Architecture PrC CO2-
C6F6 

RR CO2-
TiCl4 

RC CO2-
SO2 RC sCO2 PC sCO2 

[5] 0.122 0.171 0.266 0.652 0.530 
[10] 0.116 0.171 0.171 0.371 0.302 
[20] 0.115 0.171 0.120 0.172 0.164 
[30] 0.114 0.172 0.150 0.123 0.119 
[40] 0.115 0.157 0.133 0.093 0.101 
[50] 0.116 0.112 0.143 0.080 0.091 

A sensitivity analysis varying the size of the sample is also undertaken, with the aim of 
understanding whether or not 5000 simulations were sufficient to properly train the Network.  The 
RMSE reported in Table 7 has been calculated over the 5000-sample test set in order to provide 
comparable results. For the PrC CO2-C6F6 and RR CO2-TiCl4 systems, the small difference 
between the 1000 and 5000 cases, although influenced by the random division of the data, 
suggests that a reduced sample size might have been taken into account. Conversely, the RMSE 
decreases importantly with the sample size for the three remaining systems, being the optimum 
sample size somewhere around 4000 and 5000. For this reason, a total set of 5000 simulations 
have been employed in the rest of the work. 

Table 7. Sensitivity analysis to the sample size. RMSE [%] measured over the 5000-test set. 

System Architecture 1000 2500 4000 5000 
PrC CO2-C6F6 [5] 0.177 0.125 0.127 0.122 
RR CO2-TiCl4 [5] 0.188 0.174 0.175 0.171 
RC CO2-SO2 [20] 0.678 0.288 0.138 0.12 

RC sCO2 [30] 0.247 0.192 0.125 0.123 
PC sCO2 [30] 0.261 0.168 0.135 0.119 

Afterwards, the ANN developed in the previous section have been coupled with a global 
optimizer from the Matlab’s Global Optimization Toolbox [40] in order to maximize thermal 
efficiency for various sets of boundary conditions with little computational effort. In this way, 
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dependence of the free parameters of each cycle with Turbine Inlet Temperature, Minimum 
Cycle Temperature and Maximum Cycle Pressure can be easily studied. Such free parameters, 
which can be optimized to maximize cycle thermal efficiency, are dopant molar fraction (for the 
three dopant), Precompressor pressure ratio (CO2-C6F6) and split-flow factor (CO2-SO2). Figure 
5 to Figure 7, shows the contour maps of the optimized parameters (from now one called 
Selection maps) obtained for the PrC CO2-C6F6, RR CO2-TiCl4 and RC CO2-SO2 systems 
respectively, at a fixed maximum cycle pressure of 250 bar (SCARABEUS reference case).  

 
Figure 5. Selection maps for Transcritical Precompression Cycle with CO2-C6F6 at 250 bar (Pmax). Left figure refers 

to C6F6 molar fraction; Right figure to Precompressor Pressure Ratio 

 
Figure 6. Selection map for Recuperated Rankine Cycle on CO2-TiCl4 at 250 bar (Pmax). Figure refers to TiCl4 molar 

fraction 

A common observation for the three systems is that optimum molar fraction strongly depends 
on minimum cycle temperature, but not on Turbine Inlet Temperature. For CO2-C6F6, the 
optimum molar fraction ranges from 12 to 16.5% (Figure 5 left), increasing with Tmin. For CO2-
TiCl4, the optimum molar fraction slightly varies from 18.5% to 16.5% (Figure 6), decreasing with 
Tmin. For CO2-SO2, the optimum molar fraction increases with Tmin, from 20% to 36% (Figure 
7 left) and  is completely conditioned by the restriction that critical temperature of the mixture 
has to be at least 30ºC higher than Tmin (see Candidate Dopants section). 
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Figure 7. Selection maps for Transcritical Recompression Cycle on CO2-SO2 at 250 bar (Pmax). Left figure refers to 

SO2 molar fraction; Right figure to Split flow factor. 

The Precompressor Pressure Ratio that maximizes thermal efficiency in the PrC CO2-C6F6 
system increases with TIT and is inversely proportional to Tmin, with values from 1.25 to 1.55 
(Figure 5 right). The split flow factor for the RC CO2-SO2 (see Figure 7 right) presents more 
indented borders, but this is mainly due to the small variation of this parameter in the whole 
range of boundary conditions considered (<0.02), meaning that its optimum value is barely 
affected by cycle operating conditions.  
To properly quantify the accuracy of the ANN predictions in these maps, two validations were 
performed. The first one (RMSE 1 in Table 8) refers to the RMSE of the predicted thermal 
efficiency  with respect to the value obtained by the detailed model when simulated at the 
optimum design conditions predicted by the ANN (i.e., the values from the previous figures). 
Afterwards, the detailed models have been directly optimized for three levels of Turbine Inlet 
Temperature -550ºC, 625ºC and 700ºC-  and multiple Minimum Cycle Temperatures –from 35ºC 
to 60ºC with a 2.5ºC step. The RMSE of the optimum thermal efficiency obtained by the detailed 
models and the thermal efficiency obtained by the ANNs were calculated (RMSE 2 in Table 8).  

Table 8. Validation with the detailed model of the optimum design points. RMSE in [%] 

System Architecture RMSE 
test RMSE 1 RMSE 2 

PrC CO2-C6F6 [5] 0.122 0.05 0.04 

RR CO2-TiCl4 [5] 0.171 0.14 0.12 

RC CO2-SO2 [20] 0.12 0.18 0.2 

RC sCO2 [30] 0.123 0.22 0.24 

PC sCO2 [30] 0.119 0.23 0.3 

 
A twofold conclusion can be drawn observing the trends of RMSE1 and RMSE2: firstly, both 
RMSE1 and RMSE2 result to be of the same order of magnitude, indicating that the optimum 
cases predicted by the ANN are in good accordance with the one obtained with the detailed 
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model (“real” optimum values); secondly, the error is extremely low for the three SCARABEUS 
systems – always below 0.2 percentage points (pp), and equal or below 0.05 pp for PrC CO2-
C6F6 –  and slightly higher for the sCO2 systems (0.2-0.3 p.p.). This circumstance confirms 
another observation previously made in this section, i.e. that the SCARABEUS transcritical 
systems seems to be easier to reproduce with the ANN than pure CO2 supercritical ones. Once 
again, it is worth noting that the RMSE of the test set alone is not representative of the real 
prediction capability of the network, and that a more complete and thorough analysis, 
considering different figures of merit (not only thermal efficiency) and/or alternative data division 
in set, should be addressed in the future to confirm these results.  
In spite of this fact, the extremely low RMSE obtained confirm the fact that the maps provided in 
Figure 5 to Figure 7 can be used to obtain the specifications required for the design of the 
different components of the cycle with an acceptable precision. In fact, the deviation in the 
prediction of the thermal efficiency can be considered as acceptable for real-case design 
scenarios, where a subsequent selection of standardized equipment would affect the optimum 
design point adding a higher uncertainty than that of the network. 
What is more, the interest in the ANN is further demonstrated if the computational time spent in 
the two cases is compared. Table 9 shows a comparison between the detailed and surrogate 
(ANN) models of the time spent during the optimization of SCARABEUS reference case (TIT 
700ºC, Tmin 50ºC and Pmax 250 bar) for the five systems studied. The fast-speed evaluation of 
ANN enables to perform an optimization in less than five seconds, independently of the system 
considered. On the contrary, the computational time required for the optimization by means of 
the detailed model strongly depends on the system considered due to a twofold reason: on one 
hand, due the numerical complexity of the model (the Precompression Cycle is the harder); on 
the other hand, due to the method employed for the calculation of fluid properties (look-up tables 
employed for the CO2 mixtures are more time consuming that pure CO2 properties obtained by 
Refprop). Moreover, the quantitative values shown in the second column of Table 9 depends on 
the tolerance required for the energy balances or, in the case of the SCARABEUS working fluid, 
the size of the look-up table. In any case, the reduction in computational time brought by the use 
of the ANN is extremely clear, and ranges from 78% for Recuperated Rankine - the simplest 
layout - up to outstanding value of 99.8%, for the Transcritical Precompression with CO2-C6F6. 
Table 9. Time requirements [s] for the optimization of the reference SCARABEUS case (TIT 700ºC, Tmin 50ºC, Pmax 

250 bar) for the detailed and surrogate (ANN) models. 

  
Detailed model ANN 

Time 
savings 

[%] 
PrC CO2-C6F6 1810.5 4.3 99.8 
RR CO2-TiCl4 18.4 4.1 77.7 
RC CO2-SO2 464.9 4.4 99.1 
RC sCO2 148.9 4.4 97.0 
PC sCO2 141.5 4.8 96.6 

 
Moreover, further studies are performed over the trained ANN, proving the flexibility and 
reliability of this tool. Given that the ANN for the PrC CO2-C6F6 system was trained for 
Precompressor Pressure Ratio (PRPrC) from 1 to 1.6, the ANN of this system is a superstructure 
including the Recuperated Rankine cycle (when PRPrC = 1). In other words, the ANN originally 
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trained for a Transcritical Precompression cycle can be satisfactorily2 employed to estimate, for 
a given dopant, the performance of a Recuperated Rankine. Similarly, considering the ANN 
trained for the Transcritical Recompression with CO2-SO2 mixture, this can be employed to 
reproduce a Recuperated Rankine if the split-flow factor is fixed to 0. Bearing this in mind, the 
thermal efficiency contour maps for this Recuperated-Rankine-simulator ANN have been 
obtained for the same boundary conditions of Figure 5 and Figure 7, and the thermal efficiency 
gains enabled by the advanced layouts with respect to the Recuperated Rankine are estimated.  
Figure 8 (left) illustrates the thermal efficiency gain brought by the use of a Transcritical 
Precompression instead of a Recuperated Rankine with CO2-C6F6 mixtures: it is perfectly 
observable that it is always higher than 1.4 pp, and it reaches a maximum for high TIT and Tmin, 
confirming the superiority of the advanced layout and the results obtained in previous works by 
the authors [10]. On the other hand, the improvement for the CO2-SO2 system is even more 
evident (see Figure 8 (right)), with thermal efficiency gains ranging 6 to 9 pp. 

 
Figure 8. Thermal efficiency gains for the PrC CO2-C6F6 (left) and RC CO2-SO2 (right) with respect to the 

Recuperated Rankine Cycle. Colorbars represent the gain in thermal efficiency expressed in percentage points. 

Finally, a study on the optimum cycle maximum pressure is provided, repeating the optimization 
process considering this parameter as a free variable, and not fixing it at 250 bar (reference case 
for SCARABEUS project). Results in Figure 9 indicates that the thermal efficiency improvement 
is quite limited for the PrC CO2-C6F6 and RR CO2-TiCl4, and below 1 pp for the RC CO2-SO2 
case, confirming 250 bar as a reasonable pressure level for the SCARABEUS technology.   
 

                                                      
2 A slight error is hereby introduced by the fact that Precompression cycle presents two recuperators 
instead of one (RR case): the ANN would consider a double pressure loss for this component. The results 
would therefore provide a conservative estimation of the thermal efficiency of the Recuperated Rankine 
cycle. The deviation is lesser than a relative 1%, a value of the same order of magnitude of the 
uncertainty brought by calculation tools. The same rationale can be applied for the Recompression. 
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Figure 9. Thermal efficiency gains achieved optimizing maximum cycle pressure for different cycles and working 
fluids, with respect to their corresponding 250 bar reference case. Colorbars are expressed in percentage points. 

 
CONCLUSIONS 
The present manuscript, developed in the framework of SCARABEUS project, investigated the 
thermodynamic assessment and optimization by means of an Artificial Neural Network of 
different CO2-based power cycles. Three dopants were studied, namely C6F6, TiCl4 and SO2, 
combined with candidate cycle layouts identified in previous works by the authors: Transcritical 
Precompression for CO2-C6F6, Recuperated Rankine for CO2-TiCl4 and the Transcritical 
Recompression for CO2-SO2.  
In the first part of the manuscript, the candidate dopants and cycle layouts were thoroughly 
presented and discussed, along with the main assumptions made and a brief description of the 
computational environment employed: Aspen v11 for the estimation of thermophysical properties 
of the mixtures, Thermoflex and Matlab for the cycle simulations and modeling (detailed models). 
The second part of the manuscript dealt with the development of a comprehensive methodology 
to design and train Artificial Neural Networks capable of behaving as surrogate models of the 
detailed ones. The methodology is then applied to the three aforementioned SCARABEUS 
cycles and the two most promising pure sCO2 ones, the Recompression and the Partial Cooling. 
Results shows that Feedforward Neural Network with one hidden layer are a very promising and 
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reliable tool, capable of predicting the optimum thermal efficiency with a Root Mean Square Error 
below 0.2 percentage points.  An optimization routine conducted using the ANN models takes 
around 4-5 seconds, a value 99% lower than the one needed for a direct optimization over the 
detailed model. 
Furthermore, it was demonstrated that the trained Neural Networks can be used with extreme 
flexibility. In this work, they have been employed for (1) generation of selection maps for different 
TIT and Tmin levels, (2) calculation of thermal efficiency gains enabled by advanced layouts with 
respect to the Recuperated Rankine Cycle and (3) quantification of the thermal efficiency that 
could be achieved if maximum cycle pressure were optimized instead of fixed at 250 bar.  
The key aspects having the largest impact on the design of ANN were found to be the sampling 
of the detailed model and the measure of the error during training. Bearing this in mind, future 
works will compare different sampling methods in order to guarantee that the different datasets 
employed during training are statistically representative of the design space and, at the same 
time, have the lowest size (computational burden). Additionally, future works will couple ANN 
with Genetic Algorithms (GA) in order to perform multi-objective optimization problems. To that 
end, additional ANNs will have to be trained for each system, accounting for different Key 
Performance Indicators such as specific work or specific CAPEX.  
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Nomenclature 
ANN  Artificial Neural Network 
BIP  Binary Interaction Parameter 
CSP  Concentrated Solar Power 
LCoE  Levelised Cost of Electricity        [€/MWh] 
TIT  Turbine Inlet Temperature        [ºC] 
Tmin  Minimum Cycle Temperature        [ºC] 
PC  Partial Cooling Cycle 
PrC  Precompression Cycle 
Pmax  Maximum Cycle Pressure        [bar] 
RC  Recompression Cycle 
RMSE  Root Mean Square Error        [p.p.] 
RR  Recuperated Rankine Cycle 
ΔTmin  Minimum Temperature Difference [ºC] 
ΔP  Relative Pressure losses         [%] 
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ηis,T  Turbine isentropic efficiency         [%] 
ηis,C  Compressor isentropic efficiency   [%] 
ηis,P  Pump isentropic efficiency         [%] 
ηth  Thermal efficiency                  [%] 
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