Hydraulic Development Length and Boundary Condition Effects on Local sCO₂ Heat Transfer Coefficients Supercritical CO

Yang Chao, Nicholas C. Lopes, Mark A. Ricklick, Sandra K.S. Boetcher Embry-Riddle Aeronautical University, Daytona Beach, FL

Boundary Conditions

• sCO₂ single-pipe flow

cases utilize constant

boundary conditions.

These are often treated

as simplifications of

double-pipe heat

exchangers with a

conjugate boundary.

ENTRANCE LENGTH RESULTS

Power Cycles

Symposium



Figure 1: Single pipe geometry with varying adiabatic entrance lengths

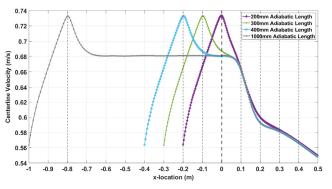
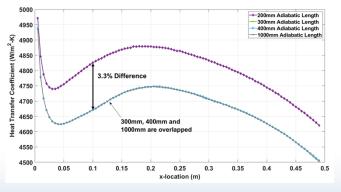
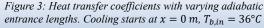
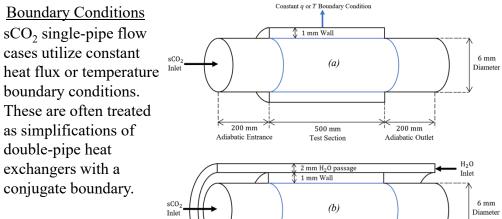
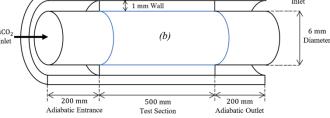




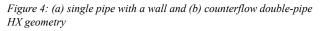
Figure 2: Centerline velocity with varying adiabatic entrance lengths. Cooling starts at x = 0 m, $T_{h in} = 36^{\circ}C$

INTRODUCTION

- Entrance Length • Many sCO₂ pipe flow simulations utilize fixed-length adiabatic entrance sections.
- It is assumed the adiabatic entrance sections are long enough to generate hydraulically fully-developed flow before entering the heat transfer test section.


OBJECTIVES


- Evaluate hydraulic entrance length criteria for sCO₂ numerically. Results will help determine appropriate hydraulically developed conditions.
- Demonstrate the differences in local heat transfer trends of sCO₂ under conjugate and corresponding constant heat flux or temperature boundary conditions to illustrate that the latter are not appropriate simplifications of the former.


CONCLUSIONS

- The generally accepted adiabatic development length criteria may not be appropriate for sCO₂.
- · Constant heat flux and temperature boundary conditions are not appropriate simplifications of conjugate sCO₂ problems.

BOUNDARY CONDITION RESULTS

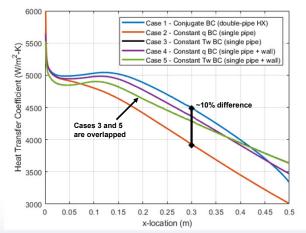


Figure 5: Comparison of boundary conditions. Cooling starts at x = $0 m. sCO_2$: $T_{hin} = 36^{\circ}C$, and $G = 200 kg/m^2 s. H_2O$: $T_{hin} = 14^{\circ}C$, and $G = 200 kg/m^2 s$