Identifying Cost-effective Steels for Direct-Fired sCO₂ Power Cycles

Richard Oleksak Contracting Research Scientist NETL Research & Innovation Center

2022 sCO₂ Power Cycles Symposium Feb. 21-24, 2022

Co-Authors

Richard P. Oleksak^{1,2}, Casey S. Carney^{1,2}, Joseph H. Tylczak¹, Reyixiati Repukaiti¹, Ömer N. Doğan¹

¹National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 ²NETL Support Contractor, 1450 Queen Ave SW, Albany, OR 97321

Additional NETL Co-Workers

Paul Jablonski, Jeffrey Hawk, Martin Detrois, Christopher McKaig, Matthew Fortner

Funding

This work was performed in support of the U.S. Department of Energy's Fossil Energy Crosscutting Technology Research Program. The Research was executed through the NETL Research and Innovation Center's Advanced Alloy Development Field Work Proposal.

Disclaimer

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of its employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Overview of sCO₂ Materials Research at NETL

OXIDATION AND MECHANICAL PERFORMANCE OF JOINED STRUCTURES

LINKING OXIDATION BEHAVIOR AND MECHANICAL DEGRADATION

0.1% SO₂

Non-protective

oxides and sulfates

800

HIGH-TEMPERATURE OXIDATION OF ALLOYS

10 µm'

No SO₂

a_{Co3O4} = a_{CoSO4} = 1

700

Cr-oxide

Equilibrium gas

500

-2

-4

-6

-8

-10 400

log₁₀(pSO₂/atm)

 $a_{Cr2O3} = a_{Cr2(SO4)3} = 1$

 $_{iO} = a_{NiSO4} = 1$

600

Temperature (°C)

LOW-TEMPERATURE CORROSION OF ALLOYS

Simulating sCO₂ Power Cycle Environments at NETL

A Multifaceted Approach to Understand Alloy Degradation Behavior

Tube furnace Pt-Rh catalyst mesh

 H_2O' inlet $CO_2/O_2/SO_2$ inlet

High pressure flowing autoclave

Mechanical testing

Closely simulating sCO₂ power cycles is challenging:

- High temperatures
- High pressures/stresses
- High flowrates
- Impurities in the CO₂

We have used different experiments to understand the effects of many of these variables to enable predictions of material performance in real sCO₂ power systems

Direct-fired sCO₂ Cycles Generate Harsh Environments

Defining Anticipated Operating Conditions

U.S. DEPARTMENT OF

Cycle Type	Component	In	let	Ou	tlet	Eluid components		
	Component	T (°C)	P (MPa)	T (°C)	P (MPa)	Fluid components		
Indirect	Heater	450-535	1-10	650-750	1-10			
	Turbine	650-750	20-30	550-650	8-10	High purity CO ₂		
	HX	550-650	8-10	100-200	8-10			
Direct	Combustor	750	20-30	1150	20-30	CO _e containing		
	Turbine	1150	20-30	800	3-8	impurities (H_2O , O_2 ,		
	HX	800	3-8	100	3-8	SO_2 , etc.)		

NATIONAL

TECHNOLOGY LABORATORY

- Direct-fired cycle = semi-open loop of impure CO₂
- This work focuses on components seeing temperatures from ≈50 to 550 °C

Summary of Steel Testing Conditions

Simulating Intermediate-to-low Temperature Components in Direct-fired Cycles

Test Name	T (°C)	P (MPa)	Composition	Phase	Component Being Simulated
aCO ₂	450	0.1	99.999% CO ₂	Gas	Intermediate Temperature HX of Indirect Cycle
DF4	450	0.1	95%CO ₂ , 4%H ₂ O, 1%O ₂	Gas	Intermediate Temperature HX of Natural Gas-Fired Direct Cycle
DF4S	450	0.1	95%CO ₂ , 4%H ₂ O, 1%O ₂ , 0.1%SO ₂	Gas	Intermediate Temperature HX of Coal Syngas-Fired Direct Cycle
sDF4	550	20	95%CO2, 4%H2O, 1%O2	Supercritical Fluid	Intermediate Temperature HX of Natural Gas-Fired Direct Cycle
Carbonic Acid	50	8	H ₂ O containing 0.05 mM H ₂ CO ₃ and 1 mM O ₂	Aqueous	Low Temperature HX and Water Separator of Natural Gas-Fired Direct Cycle
Carbonic/ Sulfuric Acid	50	8	H ₂ O containing 0.05 mM H ₂ CO ₃ , 0.5 mM H ₂ SO ₄ , 1 mM O ₂	Aqueous	Low Temperature HX and Water Separator of Coal Syngas-Fired Direct Cycle

- Several exposure tests were used to simulate conditions relevant to direct-fired cycles:
- Atmospheric pressure testing with/without impurities at 450 °C
- High pressure (supercritical) testing with impurities at 550 °C
- Low temperature (50 °C) testing in acidic environments

Candidate Steels Used for Testing

Trade-off of Performance and Cost

ERC

Ferritic/Martensitic Steels	Alloy	Fe	Ni	Cr	Co	Мо	w	AI	Si	Ti	Mn	Nb	С
	Grade 22	95.5	0.2	2.3	-	0.9	-	0.03	0.2	-	0.5	-	0.1
	Grade 91	89.3	0.09	8.4	-	0.9	-	0.01	0.3	-	0.5	0.07	0.09
	JMP3	83.2	-	9.6	-	-	-	-	-	-	-	-	-
	JMP4	82.7	-	10.1	-	-	-	-	-	-	-	-	-
	SAVE 12	82.8	-	10.5	2.9	-	2.9	-	0.2	-	0.5	0.07	0.1
	409	86.8	0.3	11.5	0.03	0.02	-	0.1	0.4	0.2	0.4	0.01	0.08
	410	86.9	0.4	11.8	-	0.04	-	0.01	0.4	-	0.4	-	0.1
	420	86.0	0.4	12.4	0.02	0.09	0.02	0.05	0.3	0.01	0.5	0.01	0.2
	416	85.5	0.3	12.5	0.02	0.2	0.01	0.01	0.2	0.01	1.1	0.01	0.1
	L80	85.7	0.3	13.1	0.02	-	0.02	0.01	0.2	0.01	0.4	0.01	0.2
	430	82.5	0.3	16.3		0.05			0.4		0.4		0.04
	E-Brite	71.6	0.2	26.5	0.02	1.0	-	0.1	0.3	-	0.04	0.1	0.01
Austenitic Steels	347H	70.1	9.0	17.3	0.1	0.4	-	-	0.3	-	1.9	0.5	0.05
	304H	70.6	8.3	18.7	0.2	0.1	0.01	0.01	0.4	-	1.1	0.01	0.07
	800	44.2	32.7	19.9	0.07	0.2	-	0.4	0.5	0.5	0.9	0.05	0.1
	309H	62.9	12.2	22.3	0.2	0.4	-	0.01	0.3	0.01	1.6	-	0.06
	310S	53.5	19.1	25.0	0.2	0.09	-	0.02	0.4	-	1.4	0.01	0.04

Important considerations include:

- Strength (max-use temperature)
- Cr content (environmental resistance) •
- Ni content (\$)

ATIONAL

HNOLOGY

Oxidation Regimes of Fe-Cr Steels in Hot CO₂

At High Temperatures, Cr-oxide is Required for Environmental Compatibility

- Chromia-forming steels are typical candidates for sCO₂ power cycles
- Understanding the factors (temperature, impurities, pressure, ...) that affect the formation and stability of chromia scales is important for successful materials selection

R.P. Oleksak, F. Rouillard, "Materials performance in CO₂ and supercritical CO₂" in Comprehensive Nuclear Materials 2nd edition, Elsevier (2020).

Fe-rich Oxide Scales Are Not "Protective"

Grade 91 (9 wt% Cr) Steel Exposed to CO₂ at 550 °C and 1 atm for 1,500 Hours

- Fe-oxide grows much faster than Cr-oxide and is significantly more permeable to carbon
- Carbon diffuses into the steel, depletes metallic Cr (reducing long-term oxidation resistance) and compromises mechanical properties

R.P. Oleksak, G.R. Holcomb, C.S. Carney, L. Teeter, O.N. Dogan, "Effect of surface finish on high-temperature oxidation of steels in CO2, supercritical CO2, and air," Oxidation of Metals 92 (2019).

Effect of Impurities on Steel Oxidation

Atmospheric Pressure Testing in CO₂-rich gases at 450 °C

- Clear transition from high to low mass gains in pure CO₂ when steel contains ≥11.5 wt% Cr
- Adding 4% H₂O, 1% O₂, 0.1% SO₂ increases this value to ≥16.3 wt% Cr (without SO₂) and ≥13.1 wt% Cr (with SO₂)

Visualizing Oxide Scales

Cross-sectional SEM of Steels After Atmospheric Pressure Testing in CO₂-rich gases at 450 °C

- SEM confirms the oxide scales expected from mass gains:
 - Low mass gains = thin Cr-oxide
 - High mass gains = thick Fe-oxide
- More Cr is required to form Cr-oxide when 4% H_2O and 1% O_2 impurities are present in the gas
- 0.1% SO₂ slightly improves the situation at 450 °C (reduced Fe-oxide formation for "borderline" Cr-oxide formers)
- 430 (16Cr-0.3Ni steel) shows similar performance as 347H (18Cr-10Ni steel)

Combined Effect of Impurities and Pressure

NATIONAL ENERGY TECHNOLOGY LABORATORY

High Pressure (Supercritical) Testing in $CO_2 + 4\% H_2O + 1\% O_2$ at 550 °C and 20 MPa

- Comparison to prior atmospheric-pressure testing at 550 °C shows a strong (negative) effect of pressure
- Only steels with ≥19.9 wt% Cr appear protective. Sample characterization is planned to better understand this behavior

Establishing Temperature-dependence of Degradation

- In the natural gas-fired (SO₂-free) case both oxidation (metal recession) and carburization (total carbon uptake by the steel) follow a clear temperature dependence
- This information is useful for establishing a maximum use temperature for a given steel and component geometry

R.P. Oleksak, J.H. Tylczak, O.N. Dogan, "Temperature-dependence of oxidation and carburization of Grade 91 steel in CO2 containing impurities," Corrosion Science 198 (2022).

Steel Performance in Low-T Aqueous Environments

Corrosion behavior in carbonic and carbonic/sulfuric acid at 50 $^\circ$ C and 8 MPa igll

- Corrosion rates show a clear dependence on Cr content of the steel
- Minimal difference in corrosion rates with/without dilute sulfuric acid additions
- 430 (16Cr-0.3Ni steel) shows corrosion rates similar to 347H (18Cr-10Ni steel)

TIONAL

Summary and Conclusions

- For the past six years, NETL has been evaluating materials in sCO₂ power cycle environments. One recent focus is identifying cost-effective steels that can be used at low/intermediate temperatures
- Impurities (H₂O, O₂, SO₂) and pressure both affect the critical Cr content needed to form a protective oxide scale, which is required at high temperatures (>450 °C)
- At lower temperatures Cr-oxide formation may not be required—In this case understanding temperature-dependence of degradation rates can help to establish max-use temperatures
- 400-series steels with high Cr content (e.g., 430) may represent a cost-effective alternative to 18Cr-10Ni steels (e.g., 316, 347) up to their max-use temperatures (≈450 °C), including in low-T aqueous environments
- At somewhat higher temperatures (≈550 °C) austenitic steels with high Cr and relatively low Ni (e.g., 309) may represent an optimal trade-off of performance and cost

NETL Resources

VISIT US AT: www.NETL.DOE.gov

Richard.Oleksak@netl.doe.gov

