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Simulating sCO,

Power Cycle Environments at NETL
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Tube furnace

Mechanical
Pt- Rh‘cc‘!’rolys’r mesh

testin Closely simulating sCO,
= g OOWer cycles is challenging:
* High temperatures

* High pressures/stresses
« High flowrates

« Impurifies in the CO,

High pressure
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We have used different
experiments to understand

the effects of many of these
variables to enable

predictions of material

performance in real sCO,
power systems

H,O inlet  CO,/0,/SO, inlet
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‘ Defining Anticipated Operating Conditions LABORATORY

Indirect sCO, cycle Heater Direct sCO, cycle
Pressurized SCO,
anary i Oxy-combustion Turbine Generator

Main Recycle Exchanger

Compressor Compressor

Primary
Exchanger

Turbine

- —

» Direct-fired cycle =
semi-open loop of
impure CO,

Low Temperature High Temperature
Recuperator Recuperator

T (°C) P (MPa) T (°C) P (MPa)

Heater 450-535 1-10 650-750 1-10 ° Th | S WO r|< fO cuses on
Indirect Turbine 650-750 20-30 550-650 8-10 High purity CO, _I_S See| N
HX 550-650 8-10 100-200 8-10 com p onen g
Combustor | 750 2030 1150 2030 Lggm i temperatures from
Direct Turbine 1150 20-30 800 3-8 impurities (H,0, O,, ~ 50 TO 5 50 OC

SO,, etc.)

HX <800 3-8 100 3-8
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Simulating Intermediate-to-low Temperature Components in Direct-fired Cycles

N":;L T (°C) | P (MPa) |Composition| Phase c“"'sp;:"l"uel::;e'“g
Intermediate
aCO; | 450 0.1 |99.999% CO2 Gas Temperature HX of
Indirect Cycle
Intermediate
95%CO0Os, Temperature HX of
DF4 450 0.1 4%H20, 1%0- Gas Natural Gas-Fired Direct
Cycle
95%C0s, Intermediate
4%H-0, Temperature HX of Coal
DF4S | 450 01 1%02, Gas Syngas-Fired Direct
0.1%S0: Cycle
Intermediate
95%C0z, [Supercriticall Temperature HX of
sDF4 | 550 20 4%H20, 1%0- Fluid Natural Gas-Fired Direct
Cycle
HzF)_ Low Temperature HX
Carbonic containing and Water Separator of
) 50 8 0.05 mM Aqueous ; .
Acid H,CO= and 1 Natural Gas-Fired Direct
2 Cycle
mM Oz
H.0
Carbonic/ containing Low Temperature HX
Sulfuric | 50 8 0.05 mM Aqueous and Water Separam.r of
Acid H2CO;3, 0.5 Coal Syngas-Fired Direct
MM HzS0y4, 1 Cycle
mM Oz
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Fuel
6.

Several exposure tests were used to simulate
conditions relevant to direct-fired cycles:

Atmospheric pressure testing with/without
impurities at 450 °C

High pressure (supercritical) testing with impurities
at 550 °C

Low temperature (50 °C) testing in acidic
environments
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Aloy Fe Ni Cr Co Mo W Al Si T Mn Nb C o

Grade22 955 02 23 - 09 - 003 02 - 05 - 01 ~ 25 $1.79/kg : ~=POl || 3
P Grade 91 893 009 84 - 09 - 001 03 - 05 007 009 2 $3.09/k | :fég | %
3 JMP3 832 - 96 - - - - - - - - - 3 ) 0
% JMP4 827 - 1041 - - - - - - oo . 5% Yy~ /kg L E
:E SAVE12 628 - 105 29 - 29 - 02 - 05 007 01 ; $1.30/kg - I:lk 1% 5
g T 400 868 03 115 003 002 - 01 04 02 04 001 008 Q15 '141 v \ &
S 410 869 04 118 - 004 - 001 04 - 04 - 01! ° $1.41/kg \ l103 @
S | 420 860 04 124 002 009 002 005 03 001 05 001 02 , £ 1L *\ S
£ | 416 855 03 125 002 02 001 001 02 001 11 001 01 | E \« | E
w | L8O 857 03 131 002 - 002 001 02 001 04 001 02 | S =

:_‘139__8_2_5_952_1_6?_:__0_-0?_:__:__0_4__:__0_4__:__091: E s , - £

E-Brite 716 02 265 002 10 - 01 03 - 004 01 001 £ | \‘%q {34 E

347H 701 90 173 01 04 - - 03 - 19 05 005 s : §
£, 3044 706 83 187 02 01 001 001 04 - 11 001 007 I R
83 800 442 327 199 007 02 - 04 05 05 09 005 0.1 0O 100 200 300 400 500 600 700
%"-" 300H 629 122 223 02 04 - 001 03 001 16 - 006 Temperature (°C)

3108 535 191 250 02 009 - 002 04 - 14 001 0.04

Important considerations include:
« Strength (max-use temperature)
« Crcontent (environmental resistance)
« Nicontent ($)
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(@) ENERG! _
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At High Temperatures, Cr-oxide is Required for Environmental Compatibility

Fe-rich oxide growth - Chromia-forming steels are

typical candidates for sCO,
power cycles

>

Breakaway

Cr-rich oxide
(chromia) growth - T « Understanding the factors

(temperature, impurities,
pressure, ...) that affect the
formation and stability of
chromia scales is important
for successful materials
selection

Extent of Oxidation

S

Reaction Time

R.P. Oleksak, F. Rouillard, “Materials performance in CO, and supercritical CO," in Comprehensive Nuclear Materials 2n? edition, Elsevier (2020).
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Cr-rich oxide

Fe-rich oxide 285

carburlzatlon

L 100um| [FEE 7 Alloy substrate i 5um.

» Fe-oxide grows much faster than Cr-oxide and is significon’rly more permeoble to carbon
« Carbon diffuses into the steel, depletes metallic Cr (reducing long-term oxidation resistance)
and compromises mechanical properties

R.P. Oleksak, G.R. Holcomb, C.S. Carney, L. Teeter, O.N. Dogan, “Effect of surface finish on high-temperature oxidation of steels in CO2, supercritical CO2, and air,” Oxidation of Metals 92 (2019).
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Effect of Impurities on Steel Oxidation N=]rons:
Atmospheric Pressure Testing in CO,-rich gases at 450 °C TL|{A50rArorY
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Steel Grade

Adding 4% H,O, 1% O,, 0.1% SO,
increases this value to 216.3 wi% Cr
(without SO,) and =213.1 wt% Cr (with SO,)

Pure CO 0,+4% H,O0+1% O . .
£ 2 T 5 2———2 — - Clear transition from high to low mass
S 4 Increasing Cr content “‘é; 4 Increasing Cr content S goins in pure C02 when steel contains
%3 s . L 211.5 wit% Cr
(=1}
% S 5 Protective
3 2 Protective behavior 3] behavior
» %
[} 1]
= =

P’r Rh co’rolys’rmesh

C0O,/0,/SO, inlet

H,O inlet




Visualizing Oxide Scales
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‘ Cross-sectional SEM of Steels After Atmospheric Pressure Testing in CO,-rich gases at 450 °C

CO, + 4% H,0 + 1% O,
Pure CO, CO, + 4% H,0 + 1% O, +0.1% SO,

Vs s .

Gr 91

410

430

347H
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SEM confirms the oxide scales
expected from mass gains:

« Low mass gains = thin Cr-oxide

« High mass gains = thick Fe-oxide

More Cr is required to form Cr-oxide
when 4% H,O and 1% O, impurities are
present in the gas

0.1% SO, slightly improves the situation
at 450 °C (reduced Fe-oxide formation
for “borderline” Cr-oxide formers)

430 (16Cr-0.3Ni steel) shows similar
performance as 347H (18Cr-10Ni steel)




Combined Effect of Impurities and Pressure N=|MATona
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« Comparison to prior atmospheric-pressure testing at 550 °C shows a strong (negative)
effect of pressure

« Only steels with 219.9 wt% Cr appear protective. Sample characterization is planned

to better understand this behavior
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Establishing Temperature-dependence of Degradation

Oxidation (Metal Recession)

Carburization (Total C Uptake)
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In the natural gas-fired (SO,-free) case both oxidation (metal recession) and carburization (total
carbon uptake by the steel) follow a clear temperature dependence

« This information is useful for establishing a maximum use temperature for a given steel and

component geometry

R.P. Oleksak, J.H. Tylczak, O.N. Dogan, “Temperature-dependence of oxidation and carburization of Grade 91 steel in CO2 containing impurities,” Corrosion Science 198 (2022).
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Steel Performance in Low-T Aqueous Environments =|naTioNAL
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(a) Carbonic Acid (b) Carbonic/Sulfuric Acid
— 0.08 — 0.08
¢ 0.07 o 0.07
> >
£ 0.06 £ 0.06
13 Increasing Cr content E Increasing Cr content
0.05 > < 0.05 >
GJ [+ 1]}
5 0.04 5 0.04
S 0.03 S 0.03
g 0.02 g 0.02
o 0.01 G 0.01 T
© 0 - === © 0 - ==
410 430 347H Gro1 410 430 347H
Steel Grade Steel Grade

« Corrosion rates show a clear dependence on Cr content of the steel
« Minimal difference in corrosion rates with/without dilute sulfuric acid additions

« 430 (16Cr-0.3Ni steel) shows corrosion rates similar to 347H (18Cr-10Ni steel)
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Summary and Conclusions N=|ranona.
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« For the past six years, NETL has been evaluating materials in sCO, power cycle
environments. One recent focus is identifying cost-effective steels that can be
used at low/intermediate temperatures

« Impurities (H,O, O,, SO,) and pressure both affect the critical Cr content needed
to form a protective oxide scale, which is required at high temperatures (>450 °C)

« At lower temperatures Cr-oxide formation may not be required—In this case
understanding tfemperature-dependence of degradation rates can help to
establish max-use temperatures

« 400-series steels with high Cr content (e.g., 430) may represent a cost-effective
alternative to 18Cr-10Ni steels (e.g., 316, 347) up to their max-use temperatures
(=450 °C), including in low-T agueous environments

« At somewhat higher temperatures (=550 °C) austenitic steels with high Cr and
relatively low Ni (e.g., 309) may represent an optimal tfrade-off of performance
and cost
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