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• The Advanced Turbines Program at NETL 

conducts R&D for directly and indirectly 

heated supercritical carbon dioxide-based 

power cycles for fossil fuel applications. 

• The focus is on components for indirectly 

heated fossil fuel power cycles with turbine 

inlet temperature in the range of 1300 -

1400ºF (700 - 760ºC) and oxy-fuel 

combustion for directly heated supercritical 

CO2 based power cycles.

• Materials issues involve quantification of 

creep, fatigue, oxidation and other 

mechanical and chemical processes in sCO2

and gaseous CO2 environments.

Research and Innovation Center

National Energy Technology Laboratory
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Oxidation:

• 9% Wt. Cr steels under CO2

• Form duplex Fe-rich oxide scales 
following parabolic growth

• Subject to enhanced carburization

• Austenitic Stainless (18-25% Wt. Cr.)
• Protective Cr-rich scale is known to be 

interrupted in CO2

Introduction
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Mechanical Properties:

• Exsitu tests not showing difference 
after 500+ hour exposures, except in 
thin sections or with additions of H2O, 
O2 gases
• Both steels and superalloys

• Insitu testing is more complex
• Ethelene cracking experiments show 

severe carburization 

• Autoclave testing IN600 alloy only showed 
loss of creep life in sCO2

Introduction
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• P91, 9% Cr steel, Martensitic / Ferritic

• MARBN, 9% Cr steel, Martensitic

• 347H, 17.3% Cr stainless steel, Austenitic with Nb-rich carbides

Materials
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• Oxidation experiments performed in tube 
furnace
• 2.54, 0.6 and 0.5 mm thick dogbone specimens
• Surface finish of 600 grit
• 650°C, CO2 with 4% H2O and 1% O2 by volume.
• 10-6 Torr Vacuum
• 1000-hour exposure

• Tensile tests
• 2.54, 0.6 and 0.5 mm thick dogbone specimens pre-

exposed as above
• ASTM E-8 test methodology 
• 3.3*10-5 / s strain rate to failure

• Creep testing
• Cylindrical specimens
• No pre-exposures
• Retort tube controls environment at ambient pressures 

only
• 207 MPa applied load at 650°C tested to failure

Methods

8

Retort Tube

Couplings

Specimen

Baffles



• Tensile specimens were exposed to 
DF4 environment for 1000 h prior to 
testing

• P91 showed similar mass gain for 
both thicknesses

• Spallation led to reduction in mass 
gain for thin 347H specimen

• Thicker 347H specimen only had 
~15% of the mass gain of P91 under 
the same conditions

Pre-Exposure / Oxidation Results
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Alloy

Specimen 

Thickness 

(mm)

Mass gain 

(mg/cm2)

P91 0.50 29.0

P91 2.54 28.0

347H 0.60 -6.0

347H 2.54 4.6



P91 Steel

• No significant changes noted 
from specimen thickness under 
vacuum exposures

• Thin specimen failed before 
yielding

• Thicker specimen's YS and UTS 
unchanged, but elongation was 
reduced by 57%

347H

• Only notable change from the 
thin section, which YS doubled 
and elongation severely reduced

Tensile Results
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• Thick specimen showed
• ~0.8mm enhanced carburization 

zone around the perimeter

• No shear lip formation, suggesting 
embrittlement

• Thinner specimen showed
• Severe embrittlement

• Electron backscatter shows 
oxidation/carburization effected 
zone penetrating to ~0.2 mm 
(including oxidation scale)

Tensile Fracture Surfaces – P91
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• Only Thin specimen featured

• Specimen failed at 45°
incline plane, suggesting 
shear ductility

• High magnification shows 
phase contrast ~50 µm 
deep

• Microprobe analysis verifies 
this to be oxidation related

Tensile Fracture Surfaces – 347H
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• MARBN and 374H tested to 
date

• Tests conducted in controlled 
environment retort tube
• 100 sccm CO2, 650°C, ~207 MPa

• MARBN alloy showed 
• ~3.5X reduction in time to failure

• ~1 decade faster MCR

• Faster MCR suggest 
mechanisms change

Creep Results
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Alloy Designation
Test Temperature 

(°C)

Stress 

Level 

(MPa)

Time to 

Failure (h)

Elongation to 

Failure (%)

Reduction in 

Area (%)

Minimum 

Creep Rate 

(%/h)

Larson Miller 

Parameter, C=25

MARBN - Air 650 206.84 527 13.2 64.4 2.21∙10-3 25586.18

MARBN - Air 650 206.84 545 12.6 69.9 1.74∙10-3 25605.15

MARBN - CO2 650 206.84 169 16.1 67.3 8.20∙10-3 25129.21

MARBN - CO2 650 206.84 140 14.7 58.3 1.00∙10-2 25054.18



• Left images are from air, right from 
gaseous CO2

• Brittle failure near specimen edge

• Cross sectioned samples
• Hardness and etching revealed 

carburized zone penetrated ~200 µm 
deep

Fracture Surfaces - MARBN

14

Air 2mm aCO2 2mm

aCO2 400 µmAir 400 µmRozman et al., 2021, Mat Sci Engr A, 826, #141996



• Found complex interactions between oxide growth and enhanced carburization

• Carburization tied up Cr

• Less Cr to form protective chromia scale

• Feed back mechanism to enhance environmentally assisted cracking

• As evidenced by microprobe analysis and change in MCR

Cross Sections - MARBN
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• Creep tests on going
• 650C, 197 MPa

• Evaluating both effect of 
thickness and environment

• To date no change NETL 
has found 
• Reduced creep life 

• Slight increase in MCR

• Suggests no mechanism 
change

Creep Results – 347H
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Flat bar specimen to maximize surface area
0.150, 0.080, 0.040, 0.020 inch thicknesses



9%Wt Cr steels

• Carburization strongly effects 
mechanical properties

• Strategies to mitigate carburization 
are necessary if used in sCO2

applications

• Thin sections subject to severe 
degradation

• Creep lifetimes reduced ~3.5X

Conclusions
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Austenitic steels – 17%Wt Cr

• Generally better resistance to 
environmental effects in sCO2

• Thin sections showed brittle 
behavior (reduction in ductility and 
increase in yield stress)

• Creep experiments are on going

• Preliminary results show reduction in 
lifetimes but no change in MCR

• Suggests they may be resistant to 
environmentally assisted cracking

Conclusions
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Thank You
Questions?
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