MAN Energy Solutions

Future in the making

Large Scale Tri-Generation Energy Storage for Heat, Cold and Electricity based on Transcritical CO2 Cycles

Paper #162

Speaker:

Authors:

• Luis Sanz Garcia, MAN Energy Solutions Schweiz AG

Luis Sanz Garcia, MAN Energy Solutions Schweiz AG

Philipp Jenny, MAN Energy Solutions Schweiz AG

• Emmanuel Jacquemoud, MAN Energy Solutions Schweiz AG

7th International Supercritical CO2 Power Cycles Symposium February 22nd, 2022

San Antonio, Texas, USA

Agenda

- **1** Introduction
- 2 Working principle of the system
- **3** Model description
- 4 Impact of thermal boundary conditions on system's performance
- **5** Impact of economic boundary conditions on system's performance
- 6 System operational flexibility
- 7 Conclusions and interpretations

From an electricity storage system to a tri-generation energy system

- CO2 as working fluid
- Charging cycle: transcritical heat pump
- Discharging cycle: organic Rankine cycle
- Power range: 1-50 MW_{el}
- Typical cycle time: 12-24 h

Thermal storage	Medium	Temp. range	Туре	Setup
Hot	Water	15-150°C	Sensible	Multi-tank reservoirs
Cold	Water / Ice	0°C	Latent	lce on coils

Moderate temperature levels allows to combine the system with heating and cooling applications!

Thermodynamic diagrams

Working principle of the system

$$\eta_{RT} = \frac{E_{dch}}{E_{ch}^{tot} \cdot \gamma^{el}}$$

Thermal share $\gamma^{th} \rightarrow$ amount of stored energy destined for thermal export Electric share $\gamma^{el} \rightarrow$ amount of stored energy destined for electricity export

 $COP_{cold}^{ex} = \frac{Q_{cold}}{E_{ch}^{tot} \cdot \gamma^{th}}$

MAN Energy Solutions

7th International sCO2 Power Cycles Symposium - Paper 162 - Luis Sanz Garcia 22.02.2022 5

Highly flexible and adaptable to specific electric and thermal demands!

Sophisticated Model is needed to calculate and optimize System performance

Considered model:

- Thermodynamic library: Refprop v10.0
- Steady state
- Sequential calculation solver developed in python

System performance is heavily dependent on thermal boundary conditions

MAN Energy Solutions

⁷th International sCO2 Power Cycles Symposium - Paper 162 - Luis Sanz Garcia 22.02.2022

System profitability and operation is heavily dependent on economic boundary conditions

The operation of the cycle is determined by the profit one can obtain from running the system

$$P_{cy}[\mathbf{\epsilon}] = \begin{pmatrix} E_{dch}^{el} \cdot C_{dch}^{el} + Q_{hot} \cdot C_{hot} + Q_{cold} \cdot C_{cold} \end{pmatrix} - E_{ch}^{tot} \cdot C_{ch}^{el} \\ \mathbf{\mu} \\$$

7th International sCO2 Power Cycles Symposium - Paper 162 - Luis Sanz Garcia 22.02.2022 9

A compromise between electrical and thermal export is necessary

Highly adaptable and flexible system

MAN Energy Solutions

7th International sCO2 Power Cycles Symposium - Paper 162 - Luis Sanz Garcia 22.02.2022 11

Conclusions and interpretations

- The moderate temperature conditions of the system allows to not only store and export electricity, but also heat and cold.
- 3-TES system offers a good compromise between roundtrip efficiency and thermal export performance.
- The **large design and flexibility** of the system allows to adapt the system to the changing boundary conditions expected throughout the 30+ years the installation is expected to operate with the **same equipment**.
- The complexity to find a single customer requiring the three forms of energy in the produced quantities makes the 3-TES system particularly suitable for **sector coupling** applications.

First MAN HPU cycle under construction in Denmark!

MAN Energy Solutions Future in the making

SPREAM TO THE REAL PROPERTY OF

Thank you for your attention!

Impact of return temperature

Excellent compromise between round-trip efficiency and thermal export

First MAN HPU cycle under construction!

- Biggest ever CO2 heat pump (50+ MW_{th}) installed in Esbjerg, Denmark.
- Replacement of CHP Coal fired plant.
- COP: 2.8 4.3
- Bid award January 2021
- Commissioning September 2022
- Heat production April 2023

