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From an electricity storage system to a tri-generation 
energy system
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• CO2 as working fluid
• Charging cycle: transcritical heat pump
• Discharging cycle: organic Rankine cycle
• Power range: 1-50 MWel

• Typical cycle time: 12-24 h

Thermal 
storage Medium Temp. 

range Type Setup

Hot Water 15-150°C Sensible Multi-tank 
reservoirs

Cold Water / Ice 0°C Latent Ice on coils

Moderate temperature levels allows to combine 
the system with heating and cooling applications!



Thermodynamic diagrams
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Working principle of the system
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Possible configurations
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Pure electricity storage 
(ETES)

Tri-generation energy 
system (3-TES)

Heat pump unit
(HPU)

• Charging cycle
• Discharging cycle
• Thermal storage
• 𝛾 0

• Charging cycle
• Discharging cycle
• Thermal storage
• Thermal export
• 0  𝛾 1

• Charging cycle
• Thermal storage optional
• Thermal export
• 𝛾 1

Highly flexible and adaptable to specific electric and thermal demands!



Sophisticated Model is needed to calculate 
and optimize System performance
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Considered model:

• Thermodynamic library: Refprop v10.0

• Steady state

• Sequential calculation solver developed in python 

Constrained optimization problem:

• Profit of the installation
• Performance
• other



System performance is heavily dependent on 
thermal boundary conditions
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Highly dependent 
on return 
temperature!

Higher return and 
supply temperatures 
requires higher 
discharge temperature 
(pressure)



System profitability and operation is heavily 
dependent on economic boundary conditions
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The operation of the cycle is determined by the profit one can obtain from running the system

Dividing by purchased amount of electricity 
we obtain the normalized profit as a function 
of KPIs 

Revenue Costs
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A compromise between electrical and thermal 
export is necessary
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𝜂 𝐶𝑂𝑃 · 𝜂

Charging cycle Discharging cycle

• Π ↑ Favors electricity export
• Π ↓ Favors thermal export

Π can be optimized for the 
given set of thermal and 

economic boundary conditions 
of each cycle 



Highly adaptable and flexible system
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Day Economic boundary
conditions

Stored energy 
use

Storage 
levels

Day 1
(ETES)

• High daily electricity cost 
fluctuations

• No thermal demand
𝛾 0 Match

Day 2 
(3-TES)

• High daily electricity cost 
fluctuation

• Thermal demand
0  𝛾 1 Mismatch

Day 3
(HPU)

• Low daily electricity cost 
fluctuation

• Thermal demand
𝛾 1 Mismatch

Day Charging
Export

TOTAL
Electricity Hot Cold

Day 1 -1’726 2’768 - - 1’042

Day 2 -1’88 2’370 4’071 3’885 10’138

Day 3 -1’303 - 5’824 5’200 9’720

High profit obtained 
from thermal export!



Conclusions and interpretations
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• The moderate temperature conditions of the system allows to not only store and export electricity, but also 
heat and cold.

• 3-TES system offers a good compromise between roundtrip efficiency and thermal export performance.

• The large design and flexibility of the system allows to adapt the system to the changing boundary conditions 
expected throughout the 30+ years the installation is expected to operate with the same equipment.

• The complexity to find a single customer requiring the three forms of energy in the produced quantities makes 
the 3-TES system particularly suitable for sector coupling applications.



First MAN HPU cycle under construction in Denmark!
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2x April 2023

MAN HPU

Hot water storage

District Heat
60-90°C

50 MWth

Seawater source
1-20°C

Green electricity



Thank you for 
your attention!



Impact of return temperature
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Excellent compromise between round-trip 
efficiency and thermal export
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First MAN HPU cycle under construction!
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• Biggest ever CO2 heat pump (50+ MWth) installed in Esbjerg, 
Denmark.

• Replacement of CHP Coal fired plant.

• COP: 2.8 - 4.3

• Bid award January 2021
• Commissioning September 2022
• Heat production April 2023


