Combustor for Direct-Fired Supercritical CO₂ Cycle

Mark Winquist (gti) **Institute Engineer Energy Supply and Conversion**

Agenda

- sCO₂ cycle summary
- Comparison to rockets
- Flame temperature impacts (non-CO₂ species)
- Pressure drop impacts (cycle efficiency)
- Design window
- Conflicting requirements
 - Combustion efficiency vs. species composition
 - Stability vs. ΔP
 - Combustion efficiency vs. ΔP
 - Mixing (temperature uniformity) vs. wall cooling
- Conclusion

sCO₂ Cycle on CO₂ T-S Diagram

- sCO₂ cycle* ٠
 - High density compression to ~300 bar (4400 psia)
 - Temperature increase ____ through series of recuperators
 - Heat input from oxy burner
 - Expansion through turbine
 - Cooling through recuperators
 - Pre-compression and chiller to pumps
 - Just above critical point
 - High density yields lower compression loads

* Weiland, N.T. and White, C.W. (2019). Performance and Cost Assessment of a Natural Gas-Fueled Direct sCO2 Power Plant. NETL-PUB-22274

Direct-Fired sCO₂ Burner Operating **Conditions Compared to Rocket Engine**

- *"The RS-25 evolved from Aerojet"* Rocketdyne's Space Shuttle Main Engine (SSME) that successfully powered 135 flights of the Space Shuttle. ... Between the shuttle program and the SLS program, the RS-25 and SSME engines have collectively experienced more than 1.1 million seconds of use."*
- 1.1 millions sec < 13 days •
- Power plant sCO₂ combustor operating • conditions are similar to rocket engine pressures and heat fluxes, but must operate for much longer durations

*https://rocket.com/space/liquid-engines/rs-25-engine

Critical Coax Injector Element Design Parameters

- Pressure drop (manifold burner)
- Injection velocity and momentum ratios
 - Fuel to oxidizer
- Flame temperature
- Combustion stability
 - Flame, acoustic, reactant supply
- Burner wall compatibility
- Turbine inlet flow uniformity (mixing)

Non-CO₂ Species Reduce Cycle Efficiency

- To control flame temperatures, pre-mix CO_2 with O_2
 - Higher CO₂ content lowers flame temp and reduces CO, OH and O_2 concentrations

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Higher flame temperatures results in more non-CO₂ species Higher compression loading

Exhibit 6-10. Effects of combustor bypass fraction on flame temperature, CO and O2 exit mole fractions, plant efficiency, and cycle efficiency 0.035 Flame temp 0.030 ---- O2 0.025 -----CO 0.020 🛱 0.015 🖻 ó 0.010 g 0.005 0.000 58.5 58.0 -Plant eff 57.5 Cycle eff 57.0 💍 56.5 0.8 1.0 0.4 0.6 sCO₂ combustor bypass fraction

Weiland, N.T. and White, C.W. (2019). Performance and Cost Assessment of a Natural Gas-Fueled Direct sCO2 Power Plant. NETL-PUB-22274

Increased Injector Pressure Drop Reduces Cycle Efficiency

- Injection velocities determined by element geometry and pressure drop
 - Higher fuel-side injection velocities yield shorter mixing lengths
 - Better mixing and performance
 - Higher injector ∆P requires more compression loading
 - Reduced cycle efficiency

Pressure Drop and Flame Temperature Limits Define Design Window

- Example for design limits of <100 psid and <3400 F
 - Need > 33% of injector CO₂ to meet temperature limit
 - Need 73% of injector CO_2 to meet ΔP limit for low velocity ratio (VR) element
 - Longer mixing length, longer burner
 - Need 47% lbm/sec of injector CO_2 to meet ΔP limit for higher velocity ratio (VR) element
 - Shorter mixing length

Burner with CO₂ Coolant and Diluent

- CO₂ not routed to injector is used as boundary layer coolant (BLC) and diluent
 - BLC designed to cool wall so mixes poorly
 - Diluent injection designed to maximize mixing but provides minimal wall protection
 - NASA mixing tool utilized for diluent injection design

Conflicting Design Requirements

Design Feature	Parameter	If Design Feature Too High
Flame Temperature	Species Composition	Excess non-CO ₂ species and cycle efficiency loss
Velocity Ratio	Stability	Potential flame instability, high ∆P, cycle efficiency loss
Pressure Drop	Combustion Efficiency	High ∆P and cycle efficiency loss
BLC and Diluent Injection Mixing	Turbine Inlet Gas Uniformity	Poor mixing with combustion gases and non-uniform turbine inlet temps

If Design Feature Too Low

High injector CO_2 yields high ΔP and cycle efficiency loss

Potential low frequency combustion instability, poor mixing

Low velocity ratio, poor element mixing and longer burner

Overheated wall and short life and/or wall damage

Conclusion

- High pressure direct-fired sCO₂ burners have many design challenges
- Conflicting requirements often result in small design windows
- An injector/ burner combination that navigates those design requirements to meet system cycle performance has been created