

Canada

The effect of elevated temperature and pressure on five metallic materials in a quasi-static supercritical-CO₂ environment

sCO₂ Power Cycle Symposium

San Antonio, TX, February 21 – February 24, 2022

K. Zanganeh¹, M. Ilinich¹, T. Robertson³, H. Dole¹, D. Y. Seo³, H. Radfarnia¹, H. Saari², A. Beigzadeh¹ ¹ Natural Resources Canada, CanmetENERGY – Ottawa (CE-O)

² Carleton University, Department of Aerospace and Mechanical Engineering

³ National Research Council of Canada, Ottawa

R&D Activities on sCO₂ Power Cycles at CE-O

CE-O's R&D on sCO₂ cycles: initiated in 2006 as a cross-cutting advanced power conversion technology for application to zero- or lowemission nuclear, fossil, and renewable energy sources.

CanmetENERGY's G2 Technology:

- Crown patented sCO₂ power cycle technology
- A unique indirectly oxy-fired sCO₂ power cycle (producing electricity, water/steam, and pressurized pipeline-ready CO_2)
- R&D at pilot scale for de-risking the technology and its main components

In-kind technical support to "STEP 10 MW_e sCO₂ Pilot Plant Test Facility":

- The project is led by Gas Technology Institute (GTI) and its partners (SwRI, GE-R, DOE-NETL)
- Goal: design, construct, commission, and operate a 10 MW_e sCO₂ pilot plant test facility in Texas, USA
- CE-O's partners: Carleton University, NRC, CMAT

G2 Technology process flow

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

CE-O/Carleton University sCO₂ Corrosion Test Rig

Used to generate new data and knowledge on alloys corrosion in sCO₂ environment

sCO₂ Corrosion Test Rig

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Natural Resources Ressources naturelles Canada

Canada

Round Robin Test Campaign

- Led by EPRI; involving 8 research institutions
- CE-O participated through Carleton University, with support from NRC for characterization
- 5 Alloys tested:
 - Inconel 740H, Inconel 625, Haynes HR-120, Stainless Steel 316L, and GR 91 steel
 - Alloy samples exposed to $sCO_2 \otimes 550^{\circ}C$ and $700^{\circ}C$, 200 bar for 1500 hrs (in 500-hr intervals)
- Mass gain measured at each 500-hr interval
- Samples characterized using SEM, EDX, and XRD after each 500-hr interval

Alloy samples loaded into specimen boat

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Visual Appearance (550°C)

- After 500 hours samples maintained polished appearance
 - 625 displayed slight heat-induced discoloration on both faces
- 1000 hours onward all samples darkened due to thickening of the oxide layer

Appearance of alloys during the 1500 hours

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Mass Gain and Results Comparison (550°C)

----**×**---- OSU

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Natural Resources Ressources naturelles Canada

600

800

Time (h)

1000 1200 1400 1600

·----

400

200

0.00

Canada

0

Surface SEM Analysis (550°C)

- All alloys developed a thin layer of oxide after 500 hour exposure
- Oversized oxide clusters identified on the surface of GR 91 and 316L steels
 - Clusters grew and combined throughout the ____ exposure
- Some oversized oxide clusters develop on the surface of 625 and HR-120 at the later exposures

Surface SEM of the samples during the 1500 hours

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

EDX and XRD Analysis (550°C)

- Scans of 625 and HR-120 exhibit a Cr-based primary oxide layer (Cr_2O_3)
 - XRD scans of 625 and HR-120 indicate low oxidation
 - 625 developed Mn-Ni-Nb spinels
 - HR-120 showed presence of Mn-Fe-Cr spinel structures
- Scans of 316L and GR91 steels indicate formation of Fe-rich primary oxide (Fe_3O_4)
 - GR91 showed significant presence of Fe_3O_4 which is indicative of poor oxidation resistance

XRD scans of alloys 625 and HR-120 after 1500 hours of exposure

XRD scans of steels 316L and GR91 after 1500 hours of exposure

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Cross-sectional SEM Analysis (550°C)

Canada

Visual Appearance (700°C)

- After 500 hour exposure all samples darkened, indicating oxidation
- By the end of 1500 hours:
 - 625 appeared least discoloured
 - 316L appeared most discoloured
 - All coupons exhibited abrasion caused by flow pattern through the specimen boat

Appearance of alloys during the 1500 hours

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Mass Gain and Results Comparison (700°C)

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Surface SEM Analysis (700°C)

- Substantial layer of oxide was detected on the surface of each alloy
- 316L: uniform base layer with rows of oversized oxide
- HR-120 and 625: uniform layer of oxide after 500 and 1000 hours onward respectively
- 740H: thin base layer with small grains forming after 1000 hours

Surface SEM of the samples during the 1500 hours

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

EDX and XRD Analysis (700°C)

- EDX scans of 740H, 625 and HR-120 exhibit a Cr-based primary oxide layer (Cr_2O_3)
 - 740H displayed an increased content of Nb within the greater oxide regions and AI content near the base of oxide layer
 - 625 exhibited an Nb rich bottom oxide layer
 - Scans for HR-120 indicated that the Cr-rich base oxides also possess a high content of Mn spinels
- 316L surface oxide consisted of Cr prominent base layer with a Fe-based oversized growths
 - Oxide layer is combination of Cr_2O_3 and Fe_3O_4

XRD scans of alloys 740H and 625 after 1500 hours of exposure

XRD scans of alloys HR-120 and 316L after 1500 hours of exposure

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Natural Resources Ressources naturelles Canada

Canada

Cross-sectional SEM Analysis (700°C)

Cross-sectional SEM Analysis (700°C)

- 740H displayed a uniform oxide layer composed primarily of Cr_2O_3
 - Internal Al₂O₃ oxide layer was detected which forms a barrier to prevent oxygen diffusion
 - Many voids along grain boundaries were found under the oxide layer
- 625 exhibited the thinnest oxide layer composed mainly of Cr_2O_3
- 316L displayed Cr₂O₃ base layer and regions of Fe₃O₄ excessive growth penetrating into substrate through Cr oxide layer
 - This is indicative of low life expectancy of the metal
- HR-120 displayed a discontinuous Cr oxide base layer and a more uniform upper layer
 - Significant oxide penetration was detected and a thick Cr-depletion zone

Cross-sectional SEM of the four alloys during the 1500 hours

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Oxides Thickness Comparison (550°C vs 700°C)

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Remarks

- Inconel 625 exhibited the best performance at both temperatures
 - 625 had among lowest mass gains and developed the thinnest and most stable oxide layer
- Longer testing needs to be done to determine maximum possible oxide thickness for these materials
 - Long term exposure testing (4,800 hours) at 700°C/200 bar has been completed for 740H, 625, HR-120 & 316L
- Further testing needs to be performed using sCO_2 in the presence of impurities, in particular O₂ and H₂O
 - New sCO₂ corrosion test facility with impurities will be commissioned by the end of this year at CE-O

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Acknowledgment

This research work was funded by NRCan's Program of Energy Research and Development (PERD). Alloys samples were supplied by EPRI, through Carleton University. Experiments performed by CanmetENERGY-Ottawa. Characterization of samples was done by National Research Council (NRC).

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Contact Information

Dr. Kourosh Zanganeh

Senior Research Scientist and Group Leader CanmetENERGY-Ottawa Natural Resources Canada

kourosh.zanganeh@nrcan-rncan.gc.ca

Ms. Margarita Ilinich **Research Engineer** CanmetENERGY-Ottawa Natural Resources Canada margarita.ilinich@nrcan-rncan.gc.ca

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Canada

Canada

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2022

