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Introduction
• Supercritical 𝐶𝐶𝑂𝑂2 (𝑠𝑠𝐶𝐶𝑂𝑂2) power cycle is an emerging technology which has the potential to address both 

environmental concerns and energy demands
• Operating pressures at supercritical condition are in 200-300atm range

• At these extreme pressure conditions, experiments are expensive. Therefore, CFD modeling would play an 
ever-important role

• Managing impurities in the cycle is another foreseen stumbling block for successful operation

• Vasely et al. [1] showed that, impurities could significantly influence 𝑠𝑠𝐶𝐶𝑂𝑂2 cycle performance
• Hence, it is very crucial to understand the effect of impurities on sCO2 combustion

• Sources of impurities in 𝑠𝑠𝐶𝐶𝑂𝑂2 combustion: 
- Impurities in fuel, inefficiency of air-separation unit before combustor, inefficiency of water separation unit 

after heat exchanger. 
- Ineffective air-separation unit may not filter Ar and 𝑁𝑁2 entirely.
- Water separation unit may not separate 𝑪𝑪𝑪𝑪,𝑯𝑯𝟐𝟐𝑪𝑪 and other minor combustion products which are 

coming from the exhaust stream. 
[1] Vesely, L., Manikantachari, K. R. V., Vasu, S., Kapat, J., Dostal, V., and Martin, S., 2018, "Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles," 
Journal of Energy Resources Technology, 141(1), pp. 012003-012003-012008.
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Goal of the Study
• 𝑠𝑠𝐶𝐶𝑂𝑂2 combustors work in a semi-closed loop

• Exhaust 𝐶𝐶𝑂𝑂2 is reintroduced in combustion chamber after removing water and other impurities

• Not all CO is removed and a significant part of it can make its way back into the combustion 
chamber

- Pathways: mainstream flow, effusion and dilution flow

• Closed 𝑠𝑠𝐶𝐶𝑂𝑂2 loop can become unstable if a positive feedback is established
- A small amount of CO in inflow stream(s), increases CO at outflow multiple fold

• Goal: study the effect of CO addition (impurity)

• We investigate this problem using two approaches
1. Simplified model: perfectly stirred reactor
2. Full 3D CFD modeling of the combustor
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Supercritical 𝐶𝐶𝑂𝑂2 cycle

Schematic of Allam cycle which makes the basis for sCO2 combustors
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Geometry
• Concept oxy-fuel combustor geometry created at SWRI 

(Ref: Jacob Delimont et al.)

• Part of design study by SWRI, Thar Energy et al. for creating a 
1MW (thermal) 𝑠𝑠𝐶𝐶𝑂𝑂2 combustor

• Experimental in nature. Similarity with traditional gas fueled 
single axial combustors

• Simplified in-order to facilitate a parametric design study

• Combustor zones: swirler, primary zone and dilution

• 𝐶𝐶𝑂𝑂2 captured from exit cycled back in combustor through 
core inflow, effusion holes and dilution slots.

• Core flow composed of 𝑂𝑂2 (obtained from air-separation unit 
upstream) premixed with super critical 𝐶𝐶𝑂𝑂2 + 𝐶𝐶𝑂𝑂 impurities

• Fuel (𝐶𝐶𝐻𝐻4) injected through circular holes along inner 
diameter in the swirler. 
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Numerical Modeling and Mesh
• Turbulence modeling

- Realizable 𝑘𝑘 − 𝜖𝜖 turbulence model

• Chemistry model
- Cai-2017 (Cai, 2017)
- Saudi ARAMCO 2.0 (W.K. Metcalfe, 2013)
- No Adaptive Zone used

• Mesh settings
- Base mesh: 2mm
- Fixed refinement on walls

 𝑌𝑌+ ~ 20
- AMR max refinement level = 3 

 Smallest cell size = 0.25mm
- Cell count 4𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠

Adaptive mesh refinement for temperature in the 
recirculation zone
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Effect of Mechanism
We study two mechanisms widely used in the CFD community for 𝐶𝐶𝐻𝐻4 combustion

• Cai-2017 (Cai, 2017)
- Developed at RWTH Achen (Germany)
- Suitable for oxy fuel combustion at high pressure (~30bar)

• Saudi ARAMCO 2.0 (W.K. Metcalfe, 2013)
- AramcoMech 2.0 builds upon AramcoMech1.3
- Developed by Combustion Chemistry Centre (𝐶𝐶3) at NUI Galway (funded by Saudi Aramco)

 https://www.nuigalway.ie/combustionchemistrycentre/#
- Reduced version of this mechanism (73 species) has been used in this work
- Developed to characterize kinetic and thermochemical properties of large number of 𝐶𝐶1–𝐶𝐶4 based 

hydrocarbon and oxygenated fuels
- Validated at very high pressures
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Effect of Mechanism
• Goal

- Qualitatively show difference between two mechanisms for methane combustion
- Compare prediction of flow field, flame shape and emissions in the concept 𝑠𝑠𝐶𝐶𝑂𝑂𝑠 combustor
- For this part, no CO is added to inflow stream

• Conclusion
- Similar temperature and CO profiles. Some differences in flame shape and temperature in corner recirculation
- Overall, both mechanisms perform equally well for 𝑠𝑠𝐶𝐶𝑂𝑂2 combustion.

Temperature (left), CO (right) distribution from Saudi ARAMCO 2.0 

Temperature (left), CO (right) distribution from Cai-2017
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Effect of 𝐶𝐶𝑂𝑂 Addition: PSR Modeling

• Perfectly Stirred Reactor (PSR) inflow conditions

• We first study effect of residence time on exit 𝐶𝐶𝑂𝑂
- Case has 75% 𝐶𝐶𝑂𝑂2 dilution 
- Two residence times studied: 0.001s and 0.1s

 0.1s 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 is representative of typical combustor
- 𝐶𝐶𝑂𝑂 from cycle 𝑁𝑁 − 1 is introduced in 𝑁𝑁𝑡𝑡𝑡 cycle

• Growth of 𝐶𝐶𝑂𝑂 is faster in low 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 PSR

• Expected as expected: in low 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 PSR, time not
sufficient to oxidize 𝐶𝐶𝐻𝐻4 to 𝐶𝐶𝑂𝑂2

• Remainder of the study: 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 PSR = 0.1𝑠𝑠

PSR inlet species Flow rate

𝑪𝑪𝑯𝑯𝟒𝟒 0.02 𝑘𝑘𝑘𝑘/𝑠𝑠

𝑪𝑪𝟐𝟐 0.08 𝑘𝑘𝑘𝑘/𝑠𝑠

𝑪𝑪𝑪𝑪𝟐𝟐 75%, 90% and 95%
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Effect of 𝐶𝐶𝑂𝑂 Addition on exit 𝐶𝐶𝑂𝑂: PSR Modeling
• 𝑠𝑠𝐶𝐶𝑂𝑂2 systems work in a semi closed loop  exit 𝐶𝐶𝑂𝑂

can come back into combustor through recycled 𝐶𝐶𝑂𝑂2
- Potential to make 𝑠𝑠𝐶𝐶𝑂𝑂2 system unstable

• PSR modeling
- 𝑁𝑁𝑡𝑡𝑡 PSR cycle, uses exit 𝐶𝐶𝑂𝑂 from 𝑁𝑁 − 1 𝑡𝑡𝑡 cycle. 

Cycle 1 has no 𝐶𝐶𝑂𝑂.
- Exit 𝐶𝐶𝑂𝑂 increases in consecutive cycles for all three 
𝐶𝐶𝑂𝑂2 dilution mass-fractions

- Trend it not exponential, as suspected by some in the 
𝑠𝑠𝐶𝐶𝑂𝑂2 community

- Exit 𝐶𝐶𝑂𝑂 appears to settle down to a steady value in 
couple of cycles
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Effect of 𝐶𝐶𝑂𝑂 Addition on 𝑇𝑇4 (exit temp): PSR Modeling
• Evolution of exit temperature for different 𝐶𝐶𝑂𝑂2 dilution levels

• As 𝐶𝐶𝑂𝑂2 dilution increases ↑ from 75% → 95%, exit temperature decreases ↓ over all

• For each case, exit temperature shows a trend to reach a steady value which is in-line with the 
trend in CO as oxidation of CO is the major contributor to overall heat release.

Evolution of exit temperature with cycles in different 𝐶𝐶𝑂𝑂2 dilution cases.
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Effect of 𝐶𝐶𝑂𝑂 Addition on exit 𝐶𝐶𝑂𝑂: 3D CFD Model 
• Full 3D CFD using steady RANS and direct 

detailed chemistry used to simulate SWRI 
concept combustor

• If measured mass/mole fraction of CO at 
outflow > CO introduced into the combustor 
 indicator of a +ve feedback

• Δ increase in CO at exit is less compared to 
what is added to the inflow

• Above argument could be misleading
- Why? Amount of 𝐶𝐶𝑂𝑂2 at inflow and outflow 

are different
- Correction: Look at the ratio of mole fraction 

of 𝐶𝐶𝑂𝑂 to 𝐶𝐶𝑂𝑂2 at the inflow and outflow

Outflow CO (kg/s)

ARAMCO 2.0 Cai-2017

Inflow CO = 0 kg/s 1.6 × 10−5 𝑘𝑘𝑘𝑘/𝑠𝑠 1.6 × 10−6 𝑘𝑘𝑘𝑘/𝑠𝑠

Inflow CO = 4.67 × 10−5 𝑘𝑘𝑘𝑘/𝑠𝑠 4.1 × 10−5 𝑘𝑘𝑘𝑘/𝑠𝑠 4.0 × 10−5 𝑘𝑘𝑘𝑘/𝑠𝑠

Inflow CO = 6.1 × 10−5 𝑘𝑘𝑘𝑘/𝑠𝑠 4.5 × 10−5 𝑘𝑘𝑘𝑘/𝑠𝑠 4.6 × 10−5 𝑘𝑘𝑘𝑘/𝑠𝑠

Outflow Xfrac(CO)/Xfrac(CO2)

ARAMCO 2.0 Cai-2017

Inflow X(CO)/X(CO2) = 0 7.6 × 10−5 6.3 × 10−6

Inflow X(CO)/X(CO2) = 1.9 × 10−4 1.5 × 10−4 1.6 × 10−4

Inflow X(CO)/X(CO2) = 2.5 × 10−4 1.9 × 10−4 1.93 × 10−4

Mass flux of 𝐶𝐶𝑂𝑂 (kg/s) at combustor outflow

Ratio of mole fractions of 𝐶𝐶𝑂𝑂 to 𝐶𝐶𝑂𝑂2 at outflow
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Summary
• Numerical framework

- Perfectly Stirred Reactor (PSR); Full 3D RANS simulation with direct detailed chemistry and Adaptive 
Mesh Refinement for capturing flame shape and flow gradients

• Two key mechanisms (ARAMCO 2.0 and Cai-2017) studied for 𝐶𝐶𝐻𝐻4 combustion
- Predicted temperature and CO profile very similar
- Exit CO prediction also very close 

• Investigated effect of 𝐶𝐶𝑂𝑂 addition
- Determine if a concept 𝑠𝑠𝐶𝐶𝑂𝑂2 combustor (designed at SWRI) establishes a +ve feedback loop, which 

would adversely affect the performance of the combustion system

• 𝐶𝐶𝑂𝑂 addition in the outflow does not seem to lead the 𝑠𝑠𝐶𝐶𝑂𝑂2 combustor (working in a semi closed 
loop) in a positive feedback loop

• Exit 𝐶𝐶𝑂𝑂 tends to reach an equilibrium value (PSR model) or reduce (3D CFD) compared to what is 
introduced at the inflow end
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