

Symposium

Heat Transfer to sCO₂ in a Staggered Cylindrical Pin Fin array Supercritical CO₂ Power Cycles

their suitability to sCO2 turbines in a direct-fired cycle.

- Experimental, numerical work primarily performed on simple geometries • Vertical circular tubes
- Direct-fire oxy-combustion cycles present TIT -> 1200° C
- Active turbine blade cooling likely necessary
- Known: Heat transfer non-dimensional parameters scale well with geometry in air

Neil Sullivan¹ (ERAU) Dr. Mark Ricklick, Associate Professor¹ (ERAU) **Dr. Sandra Boetcher, Associate Professor² (ERAU)**

1. Department of Aerospace Engineering 2. Department of Mechanical Eng

The 7th International Supercritical CO₂ Power Cycles •

ENBRY-RIDDLE Aeronautical University DAYTONA BEACH, FLORIDA

3					
	Results				
	Case	Fluid	D _h [m]	Mass Flux [kg/m ² s]	$Re_{D_{pin}}/Re$
	1	Air	0.06 (Validated)	19.01	15k / 61
	5	Air	0.005	228.06	15k / 61
	7	sCO ₂	0.005	546.67	8.6k / 34
	8	sCO ₂	0.005	1066.67	17k / 67
	9	sCO ₂	0.005	2133.33	34k / 13
	10	sCO ₂	0.005	5333.33	84k / 336
			200.20 150.40 100.60 50.800 1.0000 Nusselt nu	umber contour. Air. Re-	n = 15.000
		Nus	seltNumber		
			150.00 120.20 90.400 60.600 30.800 1.0000		
		1,00	Nusselt num	nber contour, sCO ₂ , Re	e _D = 17,000 Case
		Q 100 N	0	Short Short Case 5 Van Fossen	Case 9 Case 8
		10	1.000	10,000	
$15 - \frac{1}{2}$.,	Re_D_pin	

March 31 – April 2, 2020 San Antonio, TX, USA

100,000

results

¹ 14-17, 2007, Montreal, QC. Pai, Y., et al., "Extended Surface Heat Transfer Coefficients via Endwall Temperature Measurements," Journal of Thermophysics and Heat Transfer, September 201 Van Fossen, G., "Heat-transfer coefficients for staggered arrays of short pin fins," ASME Journal of Engineering for Power, Vol. 104, 1982, pp. 268-274.