

1

Prediction Methods of Settle Out Conditions and Design in sCO2 Power Cycles

Jonathan Wade Southwest Research Institute

Outline

- Background
- Methods to predict settle out conditions
- Lessons learned from the STEP project
- Questions

Background

- Closed loop design
- Design conditions
 - Defined by operation?
 - Defined by settle out?
- Settle out conditions
 - Pressure
 - Temperature
- Settle out flow directions

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Methods to Predict Settle Out Conditions

- Transient system model
 - Accurate
 - Expensive
 - Time consuming
- Hand calculations
 - Not as accurate
 - Cost effective
 - Faster cycle time

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

1500

1400

1200

900

"Hand Calculations"

- Hand calculations
 - Spreadsheet calculations using goal seek to iterate to solutions
 - Divide the system into control volumes with initial conditions
 - Initial conditions generated by steady state system models
 - Control volumes determined from piping model and equipment data sheets.

1 – Total Mass & System Temperature

- Each control volume maintains the initial temperature and volume.
- Mass is allowed to migrate across control volume boundaries.
- This assumes that the mass that migrates to another control volume quickly becomes the temperature of the fluid in the new control volume (heat transfer with piping and equipment).
- Initial Temperatures, Pressures, and Mass used to solve for settle out Pressure.

2 – Total Energy & System Temperature

- Each control volume maintains the initial temperature and volume.
- Mass is allowed to migrate across control volume boundaries.
- This assumes that the mass that migrates to another control volume quickly becomes the temperature of the fluid in the new control volume (heat transfer with piping and equipment).
- Initial Temperatures, Pressures, and Energy (enthalpy * mass) used to solve for settle out Pressure.

3 – Isenthalpic Expansion & Compression of Control Masses

- Each control volume maintains the initial mass and enthalpy.
- The control volumes changes size but the fluid doesn't mix with other control volumes.
- This assumes that the control volumes are adiabatic, temperature changes from compression or expansion but not heat transfer to piping or equipment.
- Initial masses, and enthalpies used to solve for settle out Pressure.

Comparison of Methods

Approach #1

Approach #2

Total Energy NOT conserved

Total Mass is conserved

Total Volume is conserved

Total Energy is conserved Total Mass NOT conserved

Total Volume is conserved

Approach #3

Total Energy is conserved

Total Mass is conserved

Total Volume is conserved

 $P_{s,o} = 140.5 \text{ bar}$

 $P_{s.o.} = 167.1 \text{ bar}$

 $\Delta H = -488,973 \text{ kJ} (-17.6\%)$

 $\Delta m = 955 \text{ kg} (+17.4\%)$

 $P_{s.o.}$ = 186.6 bar

Approach #3 is the most conservative, predicting the highest settle out pressure.

Approach #3 for SunShot Data

- Isenthalpic Expansion & Compression of Control Masses
- In addition to the immediate settle out condition an effort was made to predict the pressure vs time due to heat loss of the system
- Approach #3 was determined to be conservative, slightly overpredicting the settle out pressure

Settle Out Pressure (psi)	Trip 1	Trip 2
Sunshot Data	1173	1291
Prediction	1209	1389

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Transient System Model

- A Flownex model of both the Simple Cycle and the Recompression Closed Brayton Cycle has been developed.
 - The focus of the model is to predict transient operations, startup, shutdown, load changes
 - The transient model has much more detail than the hand calculation approach (compressor spin down, valve timing, etc.)
 - No energy transfer to the ambient environment is modeled

Transient System Model of a Trip with Full Settle Out

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Lessons learned from STEP

Blower

- The heater volume had a huge impact on the volume ratio, and lead to a higher settle out pressure.
 - Keep an eye on the loop volume ratio during design.
- Hot CO2 between the heater and the turbine stop valve has to be cooled before backflowing through the loop.
 - Consider the direction of flow and temperature migration during a settle out event.
- The STEP team is incorporating a real-time settle out pressure prediction based on actual operating conditions using the DCS.
- The STEP facility has designed additional valves to result in a 2 pressure settle out condition.

It is valuable to have both an accurate transient system model and spreadsheet calculations.

Acknowledgments

- Co-authors
 - Doug Heim Gas Technologies Institute
 - Trenton Cook HB Construction
- Project Partners
 - GTI
 - GE Research
- The U.S. Department of Energy, Office of Fossil Energy and the National Energy Technology Laboratory, under Award Number DE-FE0028979 that supports this work, as well as Supercritical Transformational Electric Power (STEP) project prime, Gas Technology Institute, and the STEP project partners, Southwest Research Institute and General Electric Research.

Questions

Thank you for your time.

Backup Slides

RCBC Layout

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Transient Settle Out Pressure

The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA