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Introduction

(Why to think about impurities?)
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Important features of direct-fired sCO, cycle
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Source: Jason Wilkes, SWRI tutorials (sCO2 symposium’18)
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Reason 1: Need of smaller combustors
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Source: Persichilli et al. (2012) and SwRI tutorials (sCO2 symposium’16)

If turbine design 1s scaled down from existing ones,
combustor may need to be scaled down (for alignment and
compatibility).
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Relation between smaller volume and impurities

* Both the volume and recirculation design determines
total residence time of combustion mixture

* As we reduce the residence time, complete oxidation of
fuel becomes challenging.




A reactor network analysis

* PSR (also known as
WSR) and PFR modeling
was extensively used 1n
1950s to develop gas
turbine combustors.

* Perfectly-Stirred Reactor (PSR)
accounts the time associated with
the molecules to enter and exit the
reactor, called reactor residence
time.
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Reactor network modeling

 The UCF 1.1 (derived from Aramco 2.0 and updated
with MD reaction rates) mechanism 1s used.

 All real gas corrections are incorporated through
CHEMKIN PSR and PFR models.

* Soave-Redlich-Kwong (SRK) equation of state 1s used
based on our prior work?.

1. Schmitt, R., Butler, P., and French, N. B., 1993, "CHEMKIN Real Gas," UIME PBB, pp. 93-006.

2. Manikantachari, K., Martin, S., Bobren-Diaz, J., and Vasu, S., 2017, "Thermal and transport Properties for the simulation of Direct-Fired sCO2 Combustor,"
Journal of Engineering for Gas Turbines and Power. GTP-17-1210, 139(12), 121505.
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Volume of sCO, reactor Vs Fuel oxidation
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Volume of sCO, reactor Vs Fuel temperature
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* As the reactant temperature increases the required
blow-out volume and required reactor volume
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Volume ot sCO, reactor Vs sCO, fraction

Influence of primary
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* Lesser primary dilution 1s more advantageous during

cold start.
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Residence time requirement
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 With 95 % CO, dilution it 1s not practical to burn
methane within reasonable residence time
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Emissions at the combustor exit
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Complete oxidation of CO with lean strategy

The effect of lean combustion on CO

IGIMD - A5CHM)
15350 AHHHY
' —— |
i —— =08
EHF“ = 000 | —N— =07
i fex \\)( i
- x
= £ &
1350 LN {
L I SHH) \ t
.:;‘-" ¥ 7 il — ]
i 15 T i} 14 i
FFF‘,!':@,‘E,['E'?”, PFR el dem

e If CO 1s oxidized with excess O2, then O2 will remain
at the exit
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Emissions can become impurities

be ATER ng to the energy needs of society

Allam Cycle: basic process diagram
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Reason 2: Impurities in fuel

[

* Natural gas can have impurities such as H,S,

H,O, N,, CO, etc. and they can

Allam Cycle: basic process diagram
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Reason 3: Inefficient water sepration

* Natural gas can have impurities such as H,S,

H,O, N,, CO, etc. and they can

Allam Cycle: basic process diagram
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Objective

High-pressure operation is the major challenges for these combustor

development.

Experimentation is expensive, time consuming and even dangerous at
these pressures. Therefore, high fidelity simulation tools play a major

role in the initial development of this combustor.

High fidelity LES simulations are performed to understand the

influence of impurities on sCO2 combustion




Cases Considered

Cases investigated in What does the case represent?
this study
Case-1 The re-cycled stream consists of pure CO..
Case-2 The re-cycled CO, stream consists of O,
impurity by 5000 ppm
Case-3 The re-cycled CO, stream consists of H,0O

impurity by 5000 ppm

[20




Approach
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Geometry

* SwRI sCO, combustor design 1s used

Effusion CO, 1s
distributed equally

200 bar operating pressure
(Outlet at total 2% pressure drop = 196 bar)
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Chemical Kinetic Mechanism
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* The UCF 1.1 mechanism (Raghu et al., 2018)

— based on Aramco 2.0
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— has important reaction rates calculated by molecular level simulations.
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EOS implementation in Converge

U To consider thermodynamic quantities such as internal energy, enthalpy,
entropy and specific heats as functions of both temperature and pressure:

U(T,p) AU(T, p)
H”(T) H(T, p) AH(T, p)
ST Fid S(T,p) — AS(T, p)
CUT) Co(T, p) AC,(T, p)
Co(T) Cy(T, p) AC, (T p)

(d These departure functions are correlated, can be conveniently evaluated

;
through departure function for Helmholtz energy: AA(7.p) = f (p - E) dv + r‘?Tfn—

t

AS(T,p) = —%AA(T )
AU(T,p) = AA(T,p)+ TAS(T,p) AC(T.p) = %AL"[T. p)
AH(T,p) = AA(T,p)+TAS(T,p)— RT(Z —1) AC,(T,p) = U%QH{T. »)

Source: Converge manual
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Inputs

Converge ® 1s used for simulations

Modeling
Turbulence modeling

Wall heat transfer
modeling
Combustion modeling

Number of cells

Equation of state

Viscosity and Thermal
conductivity

Chemical kinetic
mechanism
Simulation time

f Lo ATEing fo the energy needs of society

Parameter /model chosen

Large-eddy simulation - Viscous One Equation.
This model uses sub-grid kinetic energy in modeling
the turbulent viscosity
O’Rourke and Amsden

SAGE detailed chemistry (all species transport
equations are solved).

Approximately six million cells (Adaptive mesh
refinement is used)

Soave-Redlich-Kwong equation of state

Pure CO, properties between 800 -1600 K from
REFPROP are used.

A UCF 1.1 (23-species) mechanism derived from
Aramco 2.0
6 follow-through times




Results and Discussion
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Time averaged CO mass fraction

Time Averaged CO Mass Fraction
0.0043 0.0085 0.0128

Pure CO,

Time Averaged CO Mass fraction
0.0043 0.0085

0,+CO,

Time Averaged CO Mass Fraction
0.0043 0. 0085 0.0128




Moles at the Combustor Exit

CO (ppm) 02 (ppm) CH4 (ppm) Temperature

(K)
co, 1194 351 0 1402.3
C02+0, 185 2000 0 1415.9
CO2+H,0 1782 248 0 1408.4
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Conclusions
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Conclusions
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Complete oxidation of fuel 1s challenging while
scaling down the size of combustor

Small impurities can influence the flame structure

Not much impact on the exit temperature (if sufficient
residence time 1s given)

Having excess O, (5000 ppm) can oxidize CO and
minimize CO at the outlet

B
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