Center for Advanced Turbomachinery and Energy Research Vasu Lab

Effect of Impurities on Supercritical CO₂ Combustion

K R V Manikantachari (Raghu)^{1,2}, Scott Martin³, Subith Vasu¹

¹Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL ²Power Systems Manufacturing, LLC, Jupiter, FL ³Eagle Flight Research Center, Embry-Riddle Aeronautical University, Daytona beach, FL

> Supercritical CO₂ Symposium 2022 Virtual presentation

Outline

- Introduction
- Objective
- Approach
- Results and Discussion
- Conclusions

Introduction

(Why to think about impurities?)

Important features of direct-fired sCO₂ cycle

Picture source: https://www.colorado.edu/aqiq/resources/nitrogen-oxides/

Higher efficiency Cycle Efficiencies vs Source Temperature

4

Source: Jason Wilkes, SwRI tutorials (sCO2 symposium'18)

Picture source: http://www.21stcentech.com/environmentupdate-carbon-capture-technique-revealed/

Source: Persichilli et al. (2012) and SwRI tutorials (sCO2 symposium'16)

tutorials (sCO2 symposium'16)

Reason 1: Need of smaller combustors

Source: Persichilli et al. (2012) and SwRI tutorials (sCO2 symposium'16)

If turbine design is scaled down from existing ones, combustor may need to be scaled down (for alignment and compatibility).

ATER ing to the energy needs of society

Relation between smaller volume and impurities

- Both the volume and recirculation design determines total residence time of combustion mixture
- As we reduce the residence time, complete oxidation of fuel becomes challenging.

A reactor network analysis

 PSR (also known as WSR) and PFR modeling was extensively used in 1950s to develop gas turbine combustors.

• Perfectly-Stirred Reactor (PSR) accounts the time associated with the molecules to enter and exit the reactor, called reactor residence time.

- The UCF 1.1 (derived from Aramco 2.0 and updated with MD reaction rates) mechanism is used.
- All real gas corrections are incorporated through CHEMKIN PSR and PFR models.
- Soave-Redlich-Kwong (SRK) equation of state is used based on our prior work².

1. Schmitt, R., Butler, P., and French, N. B., 1993, "CHEMKIN Real Gas," UIME PBB, pp. 93-006.

2. Manikantachari, K., Martin, S., Bobren-Diaz, J., and Vasu, S., 2017, "Thermal and transport Properties for the simulation of Direct-Fired sCO2 Combustor," Journal of Engineering for Gas Turbines and Power. GTP-17-1210, 139(12), 121505.

Volume of sCO₂ reactor Vs Fuel oxidation

• Burning final trace of fuel needs large reactor volume.

CATER ing to the energy needs of society

Volume of sCO₂ reactor Vs Fuel temperature

 As the reactant temperature increases the required blow-out volume and required reactor volume
 decreases to the energy needs of society

10

Volume of sCO₂ reactor Vs sCO₂ fraction

1.0

PSR fuel consumption efficiency Color legend 0.8 700 K **Influence** of primary 750 K dilution level of 800 K 850 K combustor volume 0.6 Decrease 900 K in dilution. 950 K 1000 K Dash lines $\rightarrow 60\%$ dilu. 0.4 Solid lines = 95% CO2 dil. Solid lines \rightarrow 95% dilu. Dash lines = 60% CO2 dil. 0.2 1e+4 1e+5 1e+6 1e+7 1e+8 1e+21e+3Volume of the PSR (cm^3)

• Lesser primary dilution is more advantageous during cold start.

ATER ing to the energy needs of society

11

Residence time requirement

With 95 % CO₂ dilution it is not practical to burn methane within reasonable residence time
 CATER ing to the energy needs of society

Emissions at the combustor exit

Ring to the energy needs of society

13

Complete oxidation of CO with lean strategy

The effect of lean combustion on CO

- If CO is oxidized with excess O2, then O2 will remain at the exit
- ATER ing to the energy needs of society

Emissions can become impurities

Emissions other than pure H₂O and CO₂ in the exhaust must be treated as impurities in a semi closed loop operation

Reason 2: Impurities in fuel

• Natural gas can have impurities such as H_2S , H_2O , N_2 , CO_2 etc. and they can

ATER ing to the energy needs of society

Reason 3: Inefficient water sepration

• Natural gas can have impurities such as H_2S , H_2O , N_2 , CO_2 etc. and they can

Inefficient water separation can also add traces of H_2O to incoming CO_2

EXATER ing to the energy needs of society

Objective

High-pressure operation is the major challenges for these combustor development.

Experimentation is expensive, time consuming and even dangerous at these pressures. Therefore, high fidelity simulation tools play a major role in the initial development of this combustor.

High fidelity LES simulations are performed to understand the influence of impurities on sCO2 combustion

Cases Considered

Cases investigated in this study	What does the case represent?
Case-1	The re-cycled stream consists of pure CO ₂ .
Case-2	The re-cycled CO_2 stream consists of O_2 impurity by 5000 ppm
Case-3	The re-cycled CO_2 stream consists of H_2O impurity by 5000 ppm

Approach

• SwRI sCO₂ combustor design is used

Chemical Kinetic Mechanism

High pressure Ignition Delay Times:

- The UCF 1.1 mechanism (Raghu et al., 2018)
- \rightarrow based on Aramco 2.0
- \rightarrow has important reaction rates calculated by **molecular level simulations**.

EOS implementation in Converge

□ To consider thermodynamic quantities such as internal energy, enthalpy, entropy and specific heats as functions of both temperature and pressure:

Ideal gas	Real gas	Departure function
$U^0(T)$	U(T, p)	$\Delta U(T,p)$
$H^0(T)$	H(T,p)	$\Delta H(T,p)$
$S^0(T)$	S(T,p)	$\Delta S(T,p)$
$C_v^0(T)$	$C_v(T,p)$	$\Delta C_v(T,p)$
$C_p^0(T)$	$C_p(T,p)$	$\Delta C_p(T,p)$

These departure functions are correlated, can be conveniently evaluated through departure function for Helmholtz energy: $\Delta A(T,p) = \int_{-\infty}^{V} \left(p - \frac{RT}{v}\right) dv + RT ln \frac{v}{v^0}$

$$\Delta S(T,p) = -\frac{\partial}{\partial T} \Delta A(T,p)$$

$$\Delta U(T,p) = \Delta A(T,p) + T \Delta S(T,p) \qquad \Delta C_v(T,p) = \frac{\partial}{\partial T} \Delta U(T,p)$$

$$\Delta H(T,p) = \Delta A(T,p) + T \Delta S(T,p) - RT(Z-1) \qquad \Delta C_p(T,p) = \frac{\partial}{\partial T} \Delta H(T,p)$$

ERing to the energy needs of society

Source: Converge manual

Inputs

• Converge ® is used for simulations

Modeling	Parameter /model chosen					
Turbulence modeling	Large-eddy simulation \rightarrow Viscous One Equation. This model uses sub-grid kinetic energy in modeling the turbulent viscosity					
Wall heat transfer modeling	O'Rourke and Amsden					
Combustion modeling	SAGE detailed chemistry (all species transport equations are solved).					
Number of cells	Approximately six million cells (Adaptive mesh refinement is used)					
Equation of state	Soave-Redlich-Kwong equation of state					
Viscosity and Thermal conductivity	Pure CO ₂ properties between 800 -1600 K from REFPROP are used.					
Chemical kinetic mechanism	A UCF 1.1 (23-species) mechanism derived from					
Simulation time	6 follow-through times					

ATERing to the energy needs of society

Results and Discussion

Time averaged CO mass fraction

Time Averaged CO Mass Fraction

Pure CO_2

 $O_2 + CO_2$

H_2O+CO_2

	CO (ppm)	O2 (ppm)	CH4 (ppm)	Temperature (K)
CO ₂	1194	351	0	1402.3
CO2+O ₂	185	2000	0	1415.9
CO2+H ₂ O	1782	248	0	1408.4

Conclusions

- Complete oxidation of fuel is challenging while scaling down the size of combustor
- Small impurities can influence the flame structure
- Not much impact on the exit temperature (if sufficient residence time is given)
- Having excess O₂ (5000 ppm) can oxidize CO and minimize CO at the outlet

This work was supported by the Department of Energy (grant number: DE-FE0025260).

Special thanks to Gaurav Kumar and Daniel Lee from Converge Inc., for supporting in CFD simulations.

 \mathbb{P}

