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Introduction

• Combustion of CO2 diluted mixtures at high pressures 
– Direct fired sCO2 power cycles
– Carbon capture and storage
– Biogas and future alternative energy resource 
– Propulsion devices 

Direct fired sCO2 plant by NET Power Rocket engine test by SpaceX
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Introduction

• Combustion and ignition 
characteristics of CO2 mixtures 
provide an important basis

• Extreme conditions in direct-fired 
sCO2 power cycles
– Very high pressure, 

over 300 bar in the combustors
– High temperature Schematic of the Allam cycle [M. Elena Diego et al, 2017] 

300 bar 
and 95% CO2 dilution by mass



5

Introduction

Experimental combustion research with CO2 mixtures

• Low chemical reaction rate 
– CO2 dissociation into CO and reduced H radicals
– H is necessary for initiating branching reactions
– Reduction of H reduces overall reaction rate

• High heat loss 
– CO2 enhances radiation heat loss
– Reduced temperature of the flame 
– Further reduction of the reaction rate

• Flame speed of highly CO2 diluted mixture is very low
• Cellular instability of flame front surface
• Difficult flame initiatiation in experiments

CO2 + H ↔ CO + OH
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Introduction

• Combustion of CO2 diluted mixtures were previously studied in 
previous studies

• The effect of CO2 dilution on flame speed is well studied 
experimentally at low pressures

• Conditions were limited to relatively low pressures 
– Highest pressure: 8 bar by [de Persis 2013]

• To reflect realistic conditions in sCO2 systems, we investigated 
ignition characteristics and flame speeds in constant volume facility 
with an emphasis on high pressure conditions
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Flame speed measurement

Flame speed measurements at constant volume facility
• Flame initiated by a electric spark or a focused laser pulse 
• Spherical propagation of a flame
• Measurements of flame radius growth rate

𝑑𝑑𝑟𝑟𝑓𝑓/𝑑𝑑𝑑𝑑
• Constant pressure and constant volume methods 



8

Flame speed measurement 

Constant volume method – pressure data analysis 
• Linear X-P relation 

𝑋𝑋𝑏𝑏 = 𝑌𝑌𝑏𝑏 =
𝑝𝑝(𝑡𝑡) − 𝑝𝑝𝑖𝑖
𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑖𝑖

• Isentropic compression of unburnt mixture 

𝑇𝑇𝑢𝑢 = 𝑇𝑇𝑖𝑖
𝑝𝑝𝑖𝑖
𝑝𝑝

1− ⁄1 𝛾𝛾𝑢𝑢

• Flame speed and volume balance

𝑆𝑆𝑢𝑢 =
𝑅𝑅𝑐𝑐
3

1 − 1 − 𝑋𝑋𝑏𝑏
𝑝𝑝𝑖𝑖
𝑝𝑝

⁄1 𝛾𝛾𝑢𝑢
−2∕3

𝑝𝑝𝑖𝑖
𝑝𝑝

⁄1 𝛾𝛾𝑢𝑢 𝑑𝑑𝑋𝑋𝑏𝑏
𝑑𝑑𝑑𝑑
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Flame speed measurement

Constant pressure method – flame image tracking 
• From kinematic relation

• velocity on the unburnt side

• Burnt side of the front

• From mass balance and kinematic relation

• Laminar flame speed : 
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Setup with electrical spark generator
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Ignition issues with CO2 diluted mix

Challenges: Ignition was not achieved
• Ignition was difficult with high CO2 diluent 
• Spark was not visible with a regular spark generator
• Voltage across electrodes is not enough to generate spark by an 

inductive spark generator circuit 

Solutions 
• High voltage electric spark generator
• Laser ignition with focused laser pulses 
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Capacitive discharge ignition

• Two widely used types of ignition system in combustion research are inductive 
discharge ignition (IDI) and capacitive discharge ignition (CDI). 

• Ignition coil is used for both. Difference is how to store energy for primary coil 
current. 

• Common ignition system is IDI. Spark energy is limited by current increase rate 
to approx. 50 A/ms due to switching devices (mechanical relay and capacitor). 

• Performance of CDI systems are better in terms of spark energy and voltage. 
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High voltage spark generator circuit

Diagram of the final CDI spark driver circuit 
• 120 V AC power was used
• 2 stages of voltage multiplier with 1kV 1uf capacitors to store energy 
• MSD 8251 coil 1 mH 85:1
• Opto-coupler LCA717 to receive trigger signal on a different ground
• SCR 30TPS16 was used to switch high voltage and high current  

Line

Neutral

9V BAT
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2-12V

1

2

4

5

6

SCR
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DPDT 1N4007

1uF
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300k

Opto
LCA717

100R
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550 VDC

~100 kV
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CDI circuit spark discharge 
across 3 cm air gap 
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Performance of CDI spark generator

• Conventional inductive ignition circuits generate maximum ~10 kV. 
• Spark voltage of new system was estimated to be 47 – 102 kV, with 

spark energy ~100 mJ. 

• Calculations 
– Paschen’s law 3.4 MV/m, 102 kV at 3 cm gap. 
– Smooth sine wave assumption: 550 * 85 = 47 kV (conservative)

– Capacitor energy: 1
2
𝐶𝐶𝑉𝑉2 = 10−6×5502

2
= 100 mJ

• Maximum air gap was more than 3 times greater. 
• Spark was consistently generated
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Mixture preparation

• Fuel: natural gas hydrocarbon mix, >90% methane
• Ratios of gases were fixed without CO2

• Added amount of CO2 was varied up to 48 % 
• Equivalence ratio was 1 for the most of cases

Gases Vol. ratio
without CO2

Vol. percentage
with 30% CO2

Fuel 1 11%
Oxygen 2.1 23%
Nitrogen 2.1 23%

Argon 3.9 43%
CO2 0 30%
Total 9.1 130%

P w/o 
CO2
[Bar]

CO2

20% 25% 30%
20 24.0 25.0 26.0
32 38.4 40.0 41.6
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Ignition limit with spark ignition 

• It was found that the ignition depends on the amount of CO2 and initial pressure 
• Ignition with high CO2 dilution at high pressure is difficult

10 20 30 40 50

CO
2

 Ratio [%]

0

10

20

30

40

In
iti

al
 P

re
ss

ur
e 

[B
ar

]

  

Ignited

Not Ignited



17

Shadow graph images

• 9 atm initial pressure
• Additional amount of CO2

added to the prepared mixture 
was varied

• Flame surface has cellular 
structure

• High dilution with CO2 slows 
down the flame propagation 

• Reduced flame speed causes 
increases effect of buoyancy 

• Flame extinction was 
observed at highest CO2 ratio

Time

CO2 
ratio
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Initial pressure > 20 bar 

20% CO2 of total mixture
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Laser ignition experimental setup

• High pressure combustion 
chamber (max 400 bar) 

• A 3-inch sapphire viewing 
window and a laser window 

• Q-switched Nd:YAG laser 
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Mixture preparation

• Fuel: natural gas hydrocarbon mix, >90% methane
• Ratios of gases were fixed without CO2

• Added amount of CO2 was varied
• Equivalence ratio was 1 for the most of cases

Gases Vol. ratio
without CO2

Vol. percentage
with 30% CO2

Fuel 1 11%
Oxygen 2.1 23%
Nitrogen 2.1 23%
Argon 3.9 43%
CO2 0 30%
Total 9.1 130%
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Ignition limit with laser ignition  

• It was found that the ignition depends on the amount of CO2 and initial pressure 
• Ignition with high CO2 dilution at high pressure is still difficult, but laser ignition can 

go to higher pressures than with the spark igniter
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Pressure data analysis

• For flame speed calculation, smoothing was applied by low pass filter
• 2nd order low-pass filter at 300 Hz was used to remove high frequency 

noise
• Noise related to fundamental Helmholtz resonance frequency exists at 3-5 

kHz
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Pressure data analysis
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Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

Case 10

Case # Initial T Initial P ϕ Peak P
Peak 
time

[°C] [Bar] [Bar] [ms]

Peak pressure ~ 150 Bar
1 50 29.9 1.0 104.4 568.3
2 50 28.8 1.0 127.8 274.2
3 50 26.8 1.0 207.0 68.8
4 50 26.6 1.0 168.0 162.1
5 50 25.2 1.0 191.4 52.0
6 50 26.5 1.1 138.2 383.1
7 50 26.2 1.1 154.0 248.3
8 50 26.0 0.9 164.7 185.2
9 50 26.2 0.9 155.6 210.2

10 50 25.7 1.1 158.7 226.1

Peak pressure ~ 200 Bar
1 50 45.7 1.0 156.6 385.2
2 50 44.9 1.0 183.4 533.3
3 50 44.4 1.0 182.4 748.7
4 50 43.8 1.0 196.4 575.0
5 50 44.8 1.0 181.3 313.4
6 50 43.7 1.0 171.3 702.8
7 50 43.4 1.0 222.5 473.2
8 50 43.2 0.9 154.6 571.7
9 50 43.9 0.9 202.4 477.6

10 50 44.1 1.1 189.5 633.0
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Pressure data analysis

• Peak pressure by initial pressure (left) and normalized peak 
pressure vs CO2 ratio (right).
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Flame speed calculation 

𝑆𝑆𝑢𝑢 =
𝑅𝑅𝑐𝑐
3

1 − 1 − 𝑋𝑋𝑏𝑏
𝑝𝑝𝑖𝑖
𝑝𝑝

⁄1 𝛾𝛾𝑢𝑢
−2∕3

𝑝𝑝𝑖𝑖
𝑝𝑝

⁄1 𝛾𝛾𝑢𝑢 𝑑𝑑𝑋𝑋𝑏𝑏
𝑑𝑑𝑑𝑑

Flame speed
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Flame speed curve fitting

Flame speed vs temperature was calculated
• Curve fitting by 2nd order polynomial extrapolation for flame speed at initial 

condition 
• 7.07 cm/s at 20 bar, 429 K and 5.86 cm/s at 26 bar, 422 K.
• Uncertainty of flame speed caused by curve fitting is 0.023 cm/s 
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Flame images show buoyant flame

Highly buoyant, cellular surface, non-spherical flames

Initial 43.7 barInitial 29.9 Bar
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Flame images

Time = 1 ms Time = 10 ms Time = 20 ms Time = 50 ms Time = 100 ms Time = 150 ms

Initial 43.7 bar, 
Peak 171.3 bar 

Time = 10 ms Time = 20 ms Time = 40 ms Time = 60 ms Time = 80 ms Time = 100 ms

Initial 29.9 Bar,
Peak 120.2 Bar

Time = 1 ms Time = 10 ms Time = 40 ms Time = 80 ms Time = 100 ms Time = 120 ms

Initial 7.0 Bar

Initial 3.1 Bar
Time = 20 ms Time = 40 ms Time = 60 ms Time = 80 ms Time = 100 ms Time = 120 ms
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Summary / Conclusion

• Ignition and combustion of CO2 diluted hydrocarbon mixture were 
studied at constant volume facility 
– Mixures at high pressure with high amount of CO2
– Both high voltage electirical spark and laser ignition system were tested
– Ignition limit, flame images, and flame speeds are reported 
– Maximum recorded peak pressure after the combustion was 222.5 bar with 

43.4 bar initial pressure 

• Flame speed measurement
– The effect of CO2 reduced the flame speed significantly. 
– Measured flame speeds were 7.07 cm/s at 20 bar, 429 K and 5.86 cm/s at 

26 bar, 422 K.

• Flame shape of CO2 mixture
– Highly buoyant 
– Cellular flame surface
– Non-spherical flames
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