7th International sCO2 Power Cycles Symposium

An Improved Off-Design Prediction Model Based on Similarity Analysis for Turbomachinery Under S-CO₂ Condition

Presenter : Yongju Jeong

Yongju Jeong, Seongmin Son, Seong Kuk Cho, Jeong Ik Lee Dept. of Nuclear & Quantum Engineering, KAIST

Contents

- **1. Background**
- **2. Literature Review**
- **3. Similitude Model Evaluation Method**
- 4. S-CO₂ Compressor Results
- **5. Off-design Prediction Model Improvement**
- 6. Summary & Conclusion

Background – S-CO₂ Power cycle

Steam Rankine Cycle

- Working fluid : Water
- Negligible pumping work
- Very large expansion ratio
- Large turbine and system size
- Phase change over the cycle

Steam Rankine Cycle

Relatively low heat source temp

Air Brayton Cycle

- Working fluid : Air
- Comp. vs Turb. work ratio is high
- Compact turbomachinery
- No phase change over the cycle
- High heat source temperature
- Not only for power plant but also for propulsion application

Expansion

Cooling

S-CO₂ Brayton Cycle

- Working fluid : CO₂
- Reduced compression work
- Compact turbomachinery
- Low expansion ratio with recuperation
- No phase change over the cycle
- Wide range of heat source temp
- Relatively high heat sink temp

Expansio Steam Steam turbine

3 Fig. Cycle thermal efficiency with varying source temperature

Cooling

Air Brayton Cycle

Compression

Background – S-CO₂ Power cycle

• S-CO₂ power cycle is a variation of Brayton cycle

Fig. Applications of S-CO₂ power cycle

- Operates above the critical point
- Why supercritical CO_2' cycle? \rightarrow Relatively moderate critical point (T_c, P_c)
- Drastic fluid property changes near the critical point
- Favorable fluid property in the critical region
 - Liquid like high density but low viscosity, large specific heat(C_p)
 - Reduced compressibility near the critical point -> reduced compression work
- Applicability for various heat source over wide range of source temperatures ; nuclear reactor, concentrated solar power (CSP), clean fossil fuel, waste heat recovery
- High efficiency, compact and simple layout

Background – Off-design Performance Prediction

Fig. Compressor performance map example for a fixed inlet condition

- Compressor off-design operation \rightarrow [m] * [rpm] * [T_{in}] * [P_{in}]; n⁴ calculation
- Impractical to calculate all cases according to the off-design operation variables
- Thus, the similarity correction method has been used for a conventional air compressor $[m] * [rpm] * [T_{in}] * [P_{in}] \rightarrow$ simplified to 'corrected mass flow rate' & 'corrected rpm' Effect of T_{in}, P_{in} variation into mass flow rate, rpm
- Compressor performance map \rightarrow compressor performance [PR] or [Eff] vs. [m] * [rpm]

Literature Review

Dimensional analysis and derivation

Ideal gas model (IG)

- Thinking compressor as a function, $fn(D, N, m, P_{in}, T_{in}, R, \gamma)=P_{out}, \Delta H, T_{out}$
- Applying dimensional analysis (Buckingham Pi theorem) with the ideal gas assumption, $fn\left(\frac{m\sqrt{\gamma RT_{in}}}{D^{2}\gamma P_{in}}, \frac{ND}{\sqrt{\gamma RT_{in}}}\right) = \frac{P_{out}}{P_{in}}, \frac{\Delta H}{\sqrt{\gamma RT_{in}}}, \frac{T_{out}}{T_{in}}, \mu = \frac{T_{out isen} - Tin}{T_{out} - Tin} = \frac{(P_{out}/Pin)^{(\gamma-1)/\gamma} - 1}{(Tout/Tin) - 1}$ Dimensionless mass flow rate and rpm
- As far as same compressor is used, D can be neglected

Flow parameter :
$$\Pi_1 = \frac{m\sqrt{\gamma RT_{in}}}{\gamma P_{in}}$$
 Head parameter : $\Pi_3 = \frac{m\sqrt{\gamma RT_{in}}}{\gamma P_{in}}$ Efficiency parameter : $\Pi_5 = \eta$
Speed parameter : $\Pi_2 = \frac{N}{\sqrt{\gamma RT_{in}}}$ Pressure parameter : $\Pi_4 = PR$

Same $\Pi_1, \Pi_2 \rightarrow$ should have same compressor performance (Π_3, Π_4, Π_5)

•
$$\left(\frac{m\sqrt{\gamma RT_{in}}}{\gamma P_{in}}\right)_{ref} = \left(\frac{m\sqrt{\gamma RT_{in}}}{\gamma P_{in}}\right)_{off}$$

• $m_{cor} = m_{ref} = \left(\frac{m\sqrt{\gamma RT_{in}}}{\gamma P_{in}}\right)_{off} / \left(\frac{\sqrt{\gamma RT_{in}}}{\gamma P_{in}}\right)_{ref}$; corrected mass flow rate
• $\left(\frac{N}{\sqrt{\gamma RT_{in}}}\right)_{ref} = \left(\frac{N}{\sqrt{\gamma RT_{in}}}\right)_{off}$
• $N_{cor} = N_{ref} = \left(\frac{N}{\sqrt{\gamma RT_{in}}}\right)_{off} / \left(\frac{N}{\sqrt{\gamma RT_{in}}}\right)_{ref}$; corrected rpm

Literature Review

Description of previously developed models

Fig. Summary of model development

	Flow parameter	Speed parameter	Head parameter	Pressure parameter	Efficiency Parameter
IG	$\frac{\dot{m}\sqrt{\gamma RT}}{\gamma P}$	$\frac{N}{\sqrt{\gamma RT}}$	$\frac{\Delta H}{\gamma RT}$		
IGZ	$\frac{\dot{m}\sqrt{\gamma ZRT}}{\gamma P}$	$\frac{N}{\sqrt{\gamma ZRT}}$	$\frac{\Delta H}{\gamma ZRT}$		
Glassman	$\frac{\dot{m}\sqrt{\gamma RT_{cr}}}{\gamma P_{cr}}$	$\frac{N}{\sqrt{\gamma RT_{cr}}}$	$\frac{\Delta H}{\gamma RT_{cr}}$	PR	η
BNI	$\frac{\dot{m}\sqrt{\gamma ZRT_{cr}}}{\gamma P_{cr}}$	$\frac{N}{\sqrt{\gamma ZRT_{cr}}}$	$\frac{\Delta H}{\gamma ZRT_{cr}}$		
CEA	$\frac{\dot{m}\sqrt{n_sZRT}}{n_sP}$	$\frac{N}{\sqrt{n_s ZRT}}$	$\frac{\Delta H}{n_s ZRT}$		

Table. Summary of similitude parameters

- IG model assumes the ideal gas law
- However, real gas effect should be considered
- · Compressibility factor was reflected in IGZ model
- Glassman and BNI models adopted analogy of critical condition from IG and IGZ models $\frac{P_{cr}}{P_t} = \left(\frac{2}{\gamma + _1}\right)^{\gamma/(\gamma 1)} \qquad \frac{T_{cr}}{T_t} = \left(\frac{2}{\gamma + _1}\right)$
- CEA model replaced specific heat ratio with isentropic exponent, which is more generalized parameters for real gas

 $pv^{\gamma} = const \rightarrow pv^{n_s} = const$

$$\beta_{\rm T} = -\frac{1}{v} \left(\frac{\partial v}{\partial p}\right)_{\rm T} = \frac{1}{p} - \frac{1}{z} \left(\frac{\partial Z}{\partial p}\right)_{\rm T}$$
$$n_{\rm s} = -\frac{v}{p} \left(\frac{\partial p}{\partial v}\right)_{\rm s} = \frac{\gamma}{\beta_{\rm T} p}$$

Analysis Tool – KAIST-TMD

Similitude Model Evaluation Method

Error quantification and visualization

Fig. Flow chart of prediction error quantification procedure

- . Generate reference performance data with respect to mass flow rates and rpms (Designed T, P)
- 2. Prescribe T_{off} & P_{off} range, and choose one similitude model
- 3. Select one off-design operating condition, and calculate its performance
- Convert the off-design performance into corrected performance with the selected model (One to one matching of mass flow rate and rpm)
- 5. The performance of reference data and corrected data should be the same. The discrepancy between the two data sets are quantified as mean absolute percent error (MAPE)

MAPE = $\frac{100}{N} * \Sigma \left| \frac{A_t - F_t}{A_t} \right|$, A_t : Real value, F_t : Estimation

6. Repeat the same procedure for other off-design conditions and similitude models

Due to the lack of available data, KAIST-TMD was used to produce the compressor performance data

9 Fig. Example of error contour and comparison between reference and corrected performance data

S-CO₂ Compressor Results

Compressor design summary and studied range

Design point (Comp1)					
T _{in} (°C)	36.1	ρ(kg/m³)	329.4		
P _{in} /P _{out} (MPa)	7.9/20	γ	9		
m(kg/s)	129.2	Z	0.41		
rpm(rev/min) 15000 n _s 1.54					
Efficiency(%)	78.7				

Design point (Comp2)					
T _{in} (°C)	51	ρ(kg/m³)	276.7		
P _{in} /P _{out} (MPa)	9/20	γ	3.6		
m(kg/s)	129.2	Z	0.53		
rpm(rev/min)	15000	n _s	1.49		
Efficiency(%)	73.8				

Design point (Comp3)					
T _{in} (°C)	41	ρ(kg/m³)	767.3		
P _{in} /P _{out} (MPa)	14.6/25	γ	2.9		
m(kg/s)	129.2	Z	0.32		
rpm(rev/min)	15000	n _s	8.9		
Efficiency(%)	82				

	Min	Max	Resolution
T(°C)	25	60	36
P(MPa)	5.8	19.8	29
m(kg/s)	77.5	142.1	8
rpm(rev/min)	13500	16500	5

- Comp1, 2, 3 were designed near the critical point, in the gaslike and liquid-like supercritical regions, respectively
- Thermodynamic properties show dramatic changes over the studied region

S-CO₂ Compressor Results

Average prediction errors

	PR MAPE [%]						
	Comp1	Comp1 Comp2 Comp3					
IG	41.2	30.1	24.5				
IGZ	43.9	21.5	18.0				
Glassman	18.0	19.3	14.5				
BNI	18.0	11.2	5.9				
CEA	119.5	100.1	21.0				

Table. Pressure ratio average prediction error [%]

	∆H MAPE [%]					
	Comp1	Comp1 Comp2 Comp3				
IG	8.2	2.2	12.7			
IGZ	7.6	3.6				
Glassman	3.3	12.5				
BNI	3.5	3.0				
CEA	1.0	0.46	0.17			

Table. Enthalpy rise average prediction error [%]

	Eff MAPE [%]					
	Comp1	Comp1 Comp2 Comp3				
IG	8.2	17.0	4.2			
IGZ	8.3	16.2	1.8			
Glassman	7.5	14.9	3.8			
BNI	7.2	16.6	1.6			
CEA	7.8	12.0	0.49			

Table. Efficiency average prediction error [%]

- In contrast to air compressor results, enthalpy rise and pressure ratio prediction errors show different accuracies
- Enthalpy rise and pressure ratio are interchangeable expression of performance indicator, but their performance predictions do not accord with interchangeable character
- Enthalpy rise prediction outperforms pressure ratio prediction, and the accuracy of CEA model is comparable to air cases
- Efficiency predictions show little differences between the models (Comp1, Comp2)
- Efficiency predictions of Comp3 show less than 5% errors

Pressure Ratio / Enthalpy Rise

	Derived PR MAPE					
	Comp1	Comp1 Comp2 Comp3				
IG	5.8	1.4	5.5			
IGZ	5.5	2.5	1.6			
Glassman	2.3	1.0	5.4			
BNI	2.5	1.3				
CEA	0.72	0.30	0.076			

Table. Derived pressure ratio average prediction error [%]

Similitude for PR

$$\begin{split} \left(\frac{\Delta H}{\gamma RT}\right)_{cor} &= \left(\frac{\Delta H}{\gamma RT}\right)_{off} & PR_{cor} = PR_{off} \\ \Delta H_{cor} &= (\gamma RT)_{cor} \left(\frac{\Delta H}{\gamma RT}\right)_{off} & Not the same \\ H_{out,isen} &= H_{in} + \Delta H_{cor} & P_{out} = fn(S_{in}, H_{out,isen}) \end{split}$$

 $PR = P_{out}/P_{in}$

Similitude for ΔH

	PR MAPE					
	Comp1	Comp1 Comp2 Comp3				
IG	41.2	30.1	24.5			
IGZ	43.9	21.5	18.0			
Glassman	18.0	19.3	14.5			
BNI	18.0	11.2	5.9			
CEA	119.5	100.1	21.0			

Table. Pressure ratio average prediction error [%]

In case of ideal gas

$$\begin{split} &\frac{T_{out}}{T_{in}} = \left(\frac{P_{out}}{P_{in}}\right)^{(\gamma-1)/\gamma} , C_P = \frac{\gamma R}{\gamma-1} \\ &\Delta H = H_{out} - H_{in} = C_P (T_{out} - T_{in}) = C_P T_{in} \left(\frac{T_{out}}{T_{in}} - 1\right) = \frac{\gamma}{\gamma-1} R T_{in} \left(\left(\frac{P_{out}}{P_{in}}\right)^{(\gamma-1)/\gamma} - 1\right) \\ &\frac{\Delta H}{\gamma R T_{in}} = \frac{1}{\gamma-1} \left(\left(\frac{P_{out}}{P_{in}}\right)^{(\gamma-1)/\gamma} - 1\right) = fn(P_{out}/P_{in}) \end{split}$$

- Enthalpy rise and pressure ratio are interchangeable expression, but their similitude are not the same
- The property changes S-CO₂ make it hard to relate these two similitudes
- Overall, enthalpy rise predictions have better accuracy than pressure ratio predictions
- At this point, CEA model is the best model to predict enthalpy rise

•

•

Enthalpy rise prediction		MAPE [%]			
		Comp1	Comp2	Comp3	
IC	Max	41.5	12.8	57.2	
10	Min	0.41	0.032	0.08	
167	Max	10.6	6.0	13.7	
IGZ	Min	0.06	0.014	0.009	
Glassman	Max	18.3	6.7	52.1	
Glassifiali	Min	0.19	0.011	0.05	
DNI	Max	6.10	6.2	11.2	
DINI	Min	0.038	0.009	0.016	
CEA	Max	3.66	1.7	2.4	
	Min	0.027	0.002	0.002	

Table. Summary of max and min of prediction error [%]

- Besides average errors, maximum errors needs to be checked
- Each models has different shapes of error distribution
- The models tend to work well in the region where a compressor is designed after the corrections
- CEA model shows sufficient maximum error as well

Enthalpy Rise Prediction

•

•

Efficiency prediction		MAPE [%]			
		Comp1	Comp2	Comp3	
IC	Max	41.2	59.4	28.3	
10	Min	0.78	0.082	0.018	
167	Max	17.4	30.1	27.7	
192	Min	0.55	0.082	0.003	
Glassman	Max	46.6	56.8	26.0	
Glassifiali	Min	0.40	0.16	0.038	
DNI	Max	18.7	48.0	8.9	
DINI	Min	0.069	0.12	0.008	
CEA	Max	16.6	27.5	2.0	
CEA	Min	0.092	0.011	0.003	

Table. Summary of max and min of prediction error [%]

- Efficiency predictions have larger errors than enthalpy rise predictions
- CEA model has about 10% average errors in Comp1 and Comp2, but 16.6%, 27.5% maximum errors are observed locally
- Although CEA model has a good performance to predict enthalpy rise, efficiency prediction needs to be improved

Efficiency Prediction

Off-design Prediction Model Improvement

There are researches which tried to improve efficiency prediction

Glassman, $\frac{1-\eta_A}{1-\eta_B} = \left(\frac{Re_B}{Re_A}\right)^n$, n=0.1~0.2; Re effect correction Roberts, $\frac{1-\eta_A}{1-\eta_B} = \left(\frac{\gamma_A}{\gamma_B}\right)^n$, n=0.8; γ effect correction

MAPE	Average error			Maximum error		
Prediction	Enthalpy rise	Efficiency		Enthalpy rise	Efficiency	
	CEA (Modified CEA)	CEA	Modified CEA	CEA (Modified CEA)	CEA	Modified CEA
Comp1	1.0	7.6	1.6	3.7	16.6	5.0
Comp2	0.45	12.0	2.18	1.7	27.5	5.8
Val1	0.56	9.7	1.88	2.1	22.2	4.9
Val2	0.44	10.6	1.88	1.5	22.7	5.2
Val3	0.61	11.6	2.42	2.6	27.8	7.0
Val4	0.50	8.0	2.66	1.2	15.6	6.3

15

Summary & Conclusion

- 1. To predict off-design performance of compressor, the concept of "corrected mass flow rate and rpm" has been used for an air compressor. However, the validity of such methods needs to be evaluated for an S-CO₂ compressor
- 2. Five existing correction models were collected from the open literatures, the average and maximum prediction errors were evaluated according to the established error quantification and visualization procedure
- 3. In contrast to an air compressor, it is recommended to use enthalpy rise for similitude models, because constant property assumption does not work in S-CO₂
- 4. The similitude tends to work well in the region where a compressor is designed, which means the compressor designed in the gas-like supercritical region has high prediction accuracy in the gas-like region and vice versa
- 5. CEA model is the most suitable model for an S-CO₂ compressor. However, its efficiency prediction error needs to be refined because of the large maximum errors, especially in case of a compressor designed in the gas-like supercritical region, but operating in the liquid-like region
- 6. Therefore, Modified CEA model was proposed to improve efficiency prediction

Thank you