Developing Non-Intrusive Diagnostics for the Characterization of Direct-Fired sCO₂ Flows

UTSA. Engineering

Eugene N. A. Hoffman, Ian P. Bashor, and Christopher S. Combs

Department of Mechanical Engineering The University of Texas at San Antonio

Jacob Delimont Southwest Research Institute

Funded by UTSA VPREDKE Connect program

Motivation

- Assist in the development of efficient sCO₂ cycles
- Provide a means of obtaining validation data sets for computational models (CFD)

<u>Closed Loop sCO₂ Brayton Cycle schematic –</u> <u>Patel et al. (2021)</u>

Test Regime

System Design Requirements

- Handle CO₂ @ conditions up to
 - P = 17.2 MPa (2500 psia) T = 373 K (212 F)
- Optically accessible
- Simple to use

Completed System

Shadowgraphy / Schlieren

Ray Tracing Diagram of Shadowgraphy Setup

Shadowgraphy Jet visualization

Schlieren Jet visualization

Shadowgraphy setup in System

Property	Lavision Imager ProX	Photron FastCam Saz
Acquisition Rate (Hz)	20	2000
Resolution	1600p ×1200p	1024p × 1024p

Image Results

Sample images acquired

Standard camera footage

<u>High resolution</u> <u>shadowgraphy images from</u> <u>Lavision Imager Pro-X</u> <u>Time-resolved</u> <u>shadowgraphy images</u> <u>from Photron SA-Z</u>

Image Results

• Footage of sCO₂ at various states

<u>Optical Opacity witnessed during</u> <u>transition across critical point</u> Above critical point

Results

Descriptive Statistics

• Image count: 2000

Proper Orthogonal Decomposition (POD)

- Snapshot POD (Spatially orthogonal modes)
- Steps
 - 1. Create data matrix
 - 2. Obtain mean of data set
 - 3. Create mean matrix
 - 4. Obtain fluctuating properties matrix
 - 5. Calculate correlation matrix
 - 6. Perform eigenvalue decomposition
 - 7. POD modes
 - A = Fluctuating properties matrix
 - B = Temporal correlation matrix
 - C = Eigen values
 - X = Original data
 - V = Eigen vectors
 - Z = POD modes

POD Results

Individual and Cumulative Energy Distribution

POD Results

Individual modes

POD Results

Cumulation/ Summation of modes

Spectral Proper Orthogonal Decomposition (SPOD)

Spatially and temporally orthogonal modes

SPOD Results

Modal Energy Plots

SPOD Results

Modal Energy Plots

SPOD Results

Conclusion

- Constructed and tested a system for sCO₂ non-intrusive diagnostics
- Successfully employed shadowgraphy
- Successfully Applied modal analysis
- Challenges
 - Maintaining an optically accessible system

Thank you

Any Questions?

Contact (eugene.Hoffman@utsa.edu, Christopher.combs@utsa.edu)

