7th International sCO₂ Power Cycles Symposium, February 21-24, 2022

Investigation of sCO₂ Cycle Layouts for the Recovery of Low Temperature Heat Sources

Veronika Wolf, Edder Santana, Alexandre Bertrand and Stephan Leyer

Tuesday, 22nd of February 2022

Outline

- Motivation
- Objective
- Assumptions
- Cycle comparison
- Results
- Conclusions

7th International sCO2 Power Cycles Symposium San Antonio 30 March – 2 April 2020 Motivation Waste Heat Potential

Motivation Waste Heat Potential

- Transformation of primary energy into secondary energy (e.g. electricity)
- Industrial processes
- Machines
- Buildings
- Transportation

Loss of heat

Large fraction of primary energy remains unused

Motivation Classification of Waste Heat Sources

Source: Forman C, Muritala IK, Pardemann R, Meyer B. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews 2016;57:1568–79.

Power cycle configurations Literature research

Power cycle configurations Literature research

Literature review: >50 different cycle configurations

- Not comparable: different boundary conditions
- Less focus on low temperatures

Objective

- Comparison of sCO2 power cycles
- Uniform boundary conditions
- Overview of efficiencies

- Rankine cycle based with full condensation of working fluid
- Saturated liquid exits the condenser
- Steady state condition
- No friction losses in
 - Pipes
 - Heat exchangers
- Waste heat source: air
- Heat sink: air

Cycle Comparison Boundary Conditions

Parameter	Value
Waste Heat Source Temperature	60-100 °C
Waste Heat Source Pressure	1.013 bar
Waste Heat Source Mass Flow	1000 kg/s
Heat Sink Temperature	20 °C
CO ₂ Condensation Temperature	25.43 °C
CO ₂ Condensation Pressure	65 bar
Turbine Isentropic Efficiency	80%
Pump Isentropic Efficiency	80%
Heat Exchanger Effectiveness	95%

Cycle Comparison Base for comparison/ Equations

Thermodynamic first law efficiency

$$n_{th} = \frac{\dot{W}_{net}}{\dot{Q}_{in}}$$

- Net power output of cyclic system $\dot{W}_{net} = \dot{W}_{Turbine(s)} - \dot{W}_{Pump(s)}$
- Carnot efficiency

$$n_{Carnot} = 1 - \frac{T_{cold}}{T_{hot}}$$

Cycle Comparison Validation

- Implementation with original boundary conditions
- Resulting efficiency must agree with publication
- \rightarrow only then: adaptation of boundary conditions

Results Influence of pressure ratio

- Independent of cycle configuration
- Here: basic 4-component configuration

- Parabolic shaped efficiency
- One peak efficiency
- Value of pressure ratio dependent on cycle configuration

Results Influence of mass flow

- Independent of cycle configuration
- Here: basic 4-component configuration

- Net power output has a peak
- Mass flow < peak mass flow: pumping power and turbine power rise at same rate

- \rightarrow efficiency stays constant
- Mass flow > peak mass flow : pumping power rises at a faster rate than turbine power output
 - \rightarrow efficiency decreases

Basic 4-component configuration performs best at lowest temperature

Recuperator:

With increasing heat source temperature: diverging lines

 \rightarrow recuperated cycle lines

rise more steeply

- <u>Split flow before heating:</u> best performance
 - → good extraction of waste heat source
- Reheated expansion:
 - Beneficial from >70°C
 - More significant with higher temperatures

- Only 10 configurations lead to a result
- No configurations with two regenerators
- Several split flow configurations did not function for very low source temperatures

- Pump requires high power
- <u>Restrictive Temperatures</u>
 - → make it hard to fit in further steps,
 - e.g. regenerator

Conclusions

- The simplest configuration is the best: for 60-80°C heat source temperature
- Recuperator step has limited applicability, >80°C
- More HX for heat source extraction increase efficiency
- Not applicable for ultra-low temperatures:
 - Split flow before cooling
 - Intercooled compression
 - More than one recuperator
- Required pumping power is a major reason for low efficiencies

