ABSTRACT

There has been recent interest in exploring revolutionary supercritical CO₂ (sCO₂) cycles and a small effort is exploring what materials may be compatible with CO₂ at up to 1200°C. Initial exposures were conducted at 1 and 20 bar CO₂ for 1000 h at 1000° and 1200°C. As expected, Mo and W specimens that might be used as matrix materials in cermets were rapidly attacked under these conditions. Even alumina-forming FeCrAl alloys showed high mass gains in less than 100 h at 1200°C and 500 h at 1000°C due to the formation of Fe-rich oxide. Both Fe- and Ni-based alloys exposed at 1000°C showed higher mass gains than formed in air. Thus, Ni-based alloys appear compatible with sCO₂ up to 800°C but less so at higher temperatures. Low mass gains were observed for CVD SiC but MoSi₂ and MoSiAl specimens did not form protective scales under these conditions.

INTRODUCTION

Supercritical CO₂ (sCO₂) has several unique properties such as its low critical point (31°C/73.8 bar) that make it attractive for a number of different power generation applications including nuclear, fossil, concentrating solar power (CSP), geothermal and waste heat recovery [e.g. Dostal 2006, Chen 2010, Allam 2013, Iverson 2013, Wright 2013, Cheang 2015]. While some near-term applications have <550°C temperatures, fossil and CSP applications are interested in applications >700°C to enable >50% system efficiency [Feher 1968]. Several recent studies have determined that Ni-based structural alloys are compatible with sCO₂ at temperatures up to 800°C [Lee 2015, Olives 2015, 2018, Oleksak 2018, Pint 2019, 2020]. Particularly, precipitation strengthened or age hardened Ni-based alloys such as Inconel 740H [Zhao 2003, Shingledecker 2013] and Haynes 282 [Pike 2008] enable sCO₂ cycle designs at 700°-800°C. However, the mechanical properties of these alloys drop significantly in this temperature range [Viswanathan 2005] and their ASME code cases (recently approved for alloy 282) limit their maximum use temperature to 850°-875°C. Attracted by increased efficiency goals, even higher temperatures would make sCO₂ cycles more attractive for development in new applications and for replacing current technology such as the steam Rankine cycle.

Previously, oxide dispersion strengthened (ODS) FeCrAl alloys were evaluated for higher temperature applications (900°-1100°C) including the fabrication of a prototypical ODS FeCrAl heat exchanger for 1100°C operation in the UK in the 1990s using alloy ODM751 [Starr 1994]. However, issues with cost, joining and the supply chain have remained as impediments for ODS alloys. More recently, ceramic matrix composites (CMC)[e.g. Naslain 2004] and cermets (ceramic-
metal composites) [e.g. Dickerson 2002, Grzesik 2003, Caccia 2018] have attracted more attention for gas turbine components and very high temperature (1200°-1400°C) applications.

The objective of this project was to explore the performance of potential candidate alloys at 1000°-1200°C in sCO₂ as very little prior work has been conducted at such a high temperature [Wright 2004, Oh 2006, Moore 2012, Pint 2017a]. Unfortunately, the current ORNL autoclaves are not capable of such high temperatures at supercritical pressures [Pint 2015, 2017b]. Thus, the experiments were conducted at 1 and 20 bar to evaluate the performance of several candidate materials to guide future efforts such as selecting matrix materials for cermets [Peng 2019]. Unlike 700°-800°C, where Ni-based alloys performed similarly in air and sCO₂ [Pint 2020], these results suggest that CO₂ is a more aggressive environment for most conventional materials at 1000° and 1200°C and that higher pressure might further accelerate the degradation.

EXPERIMENTAL PROCEDURE

The chemical compositions of the structural materials studied are shown in Table 1. Alloy coupons (~12 x 20 x 1.5 mm) were polished to a 600 grit finish and ultrasonically cleaned in acetone and methanol prior to exposure. In some cases, three specimens of each material were exposed in each condition. Exposures were conducted for 20-500 h in the “Keiser” test rig [More 2000, Terrani 2014, Pint 2018] with parallel Hexoloy (SiC) containment tubes and the specimens held on a vertical alumina tube using alumina rods through holes in the coupons. The specimens were slowly heated to temperature in argon and then exposed to the same 99.995% purity, research grade (RG) CO₂ gas (typical vendor measured H₂O content of 4.1±0.7 ppm) with one tube at 1 bar and the second at 20 bar.

The specimen mass change was measured using a Mettler Toledo model XP205 balance with an accuracy of ±0.04 mg or ~0.01 mg/cm². After exposure, samples were metallographically cross sectioned in epoxy, in some cases with Cu plating to protect the reaction product. Reaction products were imaged using light microscopy and a field emission gun, scanning electron microscope (SEM) equipped with energy dispersive x-ray (EDX) analysis (TESCAN model MIRA3).

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Fe</th>
<th>Ni</th>
<th>Cr</th>
<th>Al</th>
<th>Si</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>APMT</td>
<td>69.0</td>
<td>0.12</td>
<td>21.6</td>
<td>4.9</td>
<td>0.53</td>
<td>2.8Mo,0.12Y,0.16Hf,0.10Zr,0.20Ta,0.049O</td>
</tr>
<tr>
<td>FeCrAlY</td>
<td>74.1</td>
<td><0.01</td>
<td>20.6</td>
<td>5.3</td>
<td><0.01</td>
<td>0.07Y</td>
</tr>
<tr>
<td>C26M</td>
<td>79.7</td>
<td>11.9</td>
<td>6.2</td>
<td>0.2</td>
<td>0.2</td>
<td>2.0Mo,0.03Y</td>
</tr>
<tr>
<td>ODS FeCrAl</td>
<td>83.5</td>
<td>0.01</td>
<td>9.7</td>
<td>6.0</td>
<td>0.02</td>
<td>0.2Ti,0.22Y,0.27Zr,0.11O,0.07C,0.02Mn</td>
</tr>
<tr>
<td>H214</td>
<td>3.5</td>
<td>75.9</td>
<td>16.0</td>
<td>4.3</td>
<td>0.08</td>
<td>0.2Mn,0.02Zr,0.01Ti,0.004Y</td>
</tr>
<tr>
<td>N693</td>
<td>4.8</td>
<td>62.1</td>
<td>28.6</td>
<td>3.1</td>
<td>0.05</td>
<td>0.2Mn,0.6Nb,0.4Ti,0.05Zr</td>
</tr>
<tr>
<td>713LC</td>
<td>0.03</td>
<td>74.2</td>
<td>12.1</td>
<td>6.2</td>
<td>0.01</td>
<td>4.5Mo,2.1Nb,0.7Ti,0.06Zr,0.07C</td>
</tr>
<tr>
<td>N738</td>
<td>0.03</td>
<td>60.8</td>
<td>16.5</td>
<td>3.7</td>
<td>0.01</td>
<td>8.6Co,1.7Mo,2.6W,1.8Ta,0.7Nb,3.4Ti,0.01Hf</td>
</tr>
<tr>
<td>M247</td>
<td>0.07</td>
<td>59.5</td>
<td>8.5</td>
<td>5.7</td>
<td>0.03</td>
<td>9.8Co,9.9W,0.7Mo,3.1Ta,1.0Ti,1.4Hf</td>
</tr>
<tr>
<td>CVD SiC</td>
<td>0.01</td>
<td>69.8</td>
<td>30.2C</td>
<td>0.003O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoSi₂</td>
<td>0.14</td>
<td><0.01</td>
<td>0.42</td>
<td>35.3</td>
<td>61.6Mo,2.3O,0.05Mg,0.02W,0.05C</td>
<td></td>
</tr>
<tr>
<td>Mo(Si,Al)₂</td>
<td>0.02</td>
<td><0.01</td>
<td>12.0</td>
<td>19.8</td>
<td>67.6Mo,0.4O,0.04W,0.1C</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS

Figure 1 shows the mass change results for the metal specimens exposed at 1200°C using 20- and 40-h thermal cycles. Mo and W specimens were exposed as potential cermet matrices. Similar to behavior in oxygen [e.g. Gulbransen 1960, 1963], both alloys were rapidly attacked in CO₂ with the mass loss due to MoO₃ or WO₃ evaporation somewhat larger at 20 bar compared to 1 bar. Surprisingly, the FeCrAl alloy specimens also showed higher mass gains than expected, particularly for the low Cr (10%) ODS FeCrAl [Dryepondt 2018], Figure 1. The mass gains for APMT and FeCrAlY of 3-5 mg/cm² after 100 h are small compared to the Mo and W specimens but a FeCrAlY alloy gained only 1.1 mg/cm² after 100 h in air [Pint 2003]. All of the metal specimens were removed after 100 h total exposure.

The ceramic specimens exposed for longer times at 1200°C are shown in Figure 2 with much smaller mass changes than those shown in Figure 1. These specimens also were exposed for 20- and 40-h cycles to 100 h but then were exposed for longer cycles for a total of 1000 hr. Slightly higher mass gains were observed on some SiC specimens (3 of CVD SiC and 3 of Hexoloy) at 20 bar CO₂. One MoSi₂ specimen was exposed in each condition. Specimens of quartz and fused silica also were exposed with very little mass change observed.

Figure 3 shows images of the FeCrAl APMT (Advanced Powder Metallurgy Tube) specimens after 20 and 40 h exposures. The scale thickness was much higher in 1 bar CO₂ (Figures 2a and 2c) compared to 20 bar CO₂ (Figures 2b, 2d and 2e). At 20 bar, the scale appeared to be fairly uniform (except for the oxide nodule shown in Figure 2d) but much thicker than would form in air after a similar exposure. After 40 hr, the average oxide thickness was ~20 µm at 20 bar and 106 µm at 1 bar. At 1 bar, the oxide appeared to include some internal oxidation and a non-uniform reaction front that increased from ~45 µm after 20 h to 106 µm after 40 hr. Figure 4 shows SEM/EDS maps of the scales formed after 40 h at 1 and 20 bar. The scales appear to be largely Al₂O₃ although some Cr-rich oxide areas were noted for the thicker scale formed in 1 bar CO₂ and an outer Fe-
rich oxide layer formed after exposure in 20 bar CO₂.

Figure 2. Specimen mass gain data for specimens exposed to RG CO₂ at 1200°C in 1 bar (open symbols) and 20 bar (closed symbols).

Figure 3. Light microscopy of APMT specimens exposed at 1200°C in 1 and 20 bar RG CO₂ (a) 1 bar, 20 h, (b) 20 bar, 20 h, (c) 1 bar, 40 h, (d,e) 20 bar 40 h.
Figures 5a and 5b show polished cross-sections of SiC specimens exposed for 1000 h in each condition. In some areas, a thicker reaction product was observed, Figure 5b. More characterization is needed to identify the composition and phase. However, the thin reaction product is consistent with the mass change in Figure 2.

For 1000°C exposures, Figure 6 shows mass change data for specimens exposed for 100 h in 1 and 20 bar CO2. Similar to 1200°C, the Mo and W specimens showed large mass changes and the SiC specimens showed low mass changes in both 1 and 20 bar CO2. Based on the positive results at 1200°C, additional MoSi2 and Mo(Si,Al)2 [Ingemarsson 2010] specimens were exposed at 1000°C. However, the mass gains were much higher than the SiC specimens, particularly for the Mo(Si,Al)2 specimens exposed in 20 bar CO2. The mass gains for the FeCrAl alloys were higher than expected as were the results for several Ni-based alloys tested. Figure 7 shows the mass change results for some of the metal specimens that were run for longer times with some specimens showing mass losses at longer times. To contrast these results, several specimens were oxidized for 1000 h (2, 500-h cycles) in laboratory air and those mass changes are compared to the CO2 results in Figure 8. Increased mass gains in CO2 ranged from 2-100X and several
specimens showed a mass loss after the 1 bar exposure and a large mass gain after the 20 bar exposure.

Figures 5c and 5d show the thin reaction products formed on CVD SiC after 1000 h at 1000°C in 1 and 20 bar CO2, respectively. Figure 8 indicated that the mass gains in CO2 were slightly higher than in laboratory air. For the metallic specimens, example reaction products are shown in Figures 9 and 10. In contrast to Figures 3 and 4 at 1200°C, the 20 bar condition appeared to result in thicker reaction products. In some cases, such as Figure 9c, the spallation of the reaction product

Figure 6. Specimen mass change after 100 h at 1000°C in RG CO2 at 1 and 20 bar. The whiskers show a standard deviation and average values are shown except where noted.

Figure 7. Specimen mass gain data for specimens exposed to RG CO2 at 1000°C in 1 bar (open symbols) and 20 bar (closed symbols). Three APMT specimens were exposed in each condition and one was removed after 500 h.
was consistent with the mass loss for the alloy N738 specimen, Figure 7. The internal oxidation observed indicated that the alloys were not able to exclusively form an Al-rich oxide under these conditions.

DISCUSSION
The results for the Mo and W specimens were as expected and suggest that a coating would be needed or other strategy utilized to protect W- or Mo-based cermets. Likewise, the CVD SiC, Hexoloy, quartz (crystalline) and fused silica (amorphous) specimens all showed low mass changes in most conditions at 1200°C suggesting that silica-forming alloys might do well in these environments. However, the MoSi$_2$ and Mo(Si,Al)$_2$ specimens showed higher mass gains than...
expected at 1000°C. Characterization is still in progress to learn more about the reaction product formed on these alloys. For CVD SiC, Figure 5, the reaction products were thin but non-uniform and Figure 8 shows that the mass gains in CO\textsubscript{2} were higher than those observed in laboratory air.

APMT specimens were included as a surrogate for ODS FeCrAl. Alumina is considered to be less permeable to C than chromia scales [Jönsson 1997] so a more protective scale was expected to form under these conditions. However, there are few experiments where alumina-forming alloys have been exposed to CO\textsubscript{2} at ≥1000°C. An early study showed good resistance to carburization for type 406 stainless steel (Fe-12Cr-4Al) up to 982°C [McCoy 1965]. Another study used 10%CO\textsubscript{2}-90%H\textsubscript{2}O with exposures at 900° and 1135°C and observed mass gains higher than expected for similar exposures in air, but only limited characterization was performed [Wright 2004]. It has been known for many years that oxidation in CO\textsubscript{2} sets up a strong driving force for internal carburization [Gheno 2011, Gong 2017]. Recent work suggested that Ni-based alloys were less susceptible to internal carburization because of their lower C solubility [Olivares 2015]. After the FeCrAl alloys experienced higher than expected mass gains at 1200°C, several Ni-based alumina-forming alloys were included in the 1000°C experiment. However, all of the alloys experience higher mass gains than expected, Figures 6-8. The alumina-forming alloys such as APMT, 214 and M247 showed mass gains in air that were <1 mg/cm2. For example, a 214 specimen gained 0.32 mg/cm2 in two 500-h cycles in laboratory air at 1000°C. In 20 bar CO\textsubscript{2}, the mass gain was <10X higher, Figures 7 and 8. In contrast, CVD SiC had a 0.11 mg/cm2 mass gain in laboratory air at 1000°C, similar to the average mass gain of 0.18 mg/cm2 in 1 bar CO\textsubscript{2}, Figure 8. At 20 bar CO\textsubscript{2}, the average mass gain was 0.40 mg/cm2. Quantification of the reaction product thickness in Figure 5 is needed to better compare these results. In addition, thermodynamic calculations of the C activities in these environments will assist in understanding this behavior. Future work is in progress to expose cermet materials and explore the effect of pre-oxidation (e.g., to pre-form a protective Al-rich oxide in air) prior to CO\textsubscript{2} exposure. Initial results suggest limited benefit from this strategy.
SUMMARY

Initial exposures have been conducted for 1000 h at 1000°C and 1200°C in RG CO₂ at 1 and 20 bar. As expected, cermet matrix materials like Mo and W were rapidly attacked under all conditions. CVD and Hexoloy SiC showed the most protective behavior and fused silica and quartz specimens exhibited only small mass changes, suggesting some promise for silica-forming materials and coatings under these conditions. However, MoSi₂ and Mo(Si,Al)₂ specimens showed higher mass gain than expected at 1000°C. The next round of testing is expected to include coated cermets and pre-oxidized candidate alloys to better understand the role of CO₂ at these extreme conditions.

NOMENCLATURE

CSP = Concentrated Solar Power
CVD = Chemical Vapor Deposition
ODS = Oxide Dispersion Strengthened
ORNLM = Oak Ridge National Laboratory
RG = Research Grade

REFERENCES

Gheno, T., Monceau, D., Zhang, J., Young, D. J., 2011 “Carburisation of Ferritic Fe-Cr Alloys by

ACKNOWLEDGMENTS

The authors would like to thank M. Howell, B. Johnston, T. Lowe, T. Geer and V. Cox for assistance with the experimental work. E. Lara-Curzio and K. Kane provided helpful comments on the