

Defining Temperature Limitations for Steels in sCO₂ Applications

B. A. Pint, R. Pillai, J. R. Keiser

Corrosion Science & Technology Group Materials Science & Technology Division Oak Ridge National Laboratory

February 2022: sCO₂ symposium

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgments

- Funding: DOE Office of Fossil Energy, Crosscutting Research Program S. Nathan, NETL Project monitor
- M. Howell (retired), B. Johnston oxidation experiments
- T. Lowe SEM, image analysis
- V. Cox metallography
- Special thanks for alloys:
 - Tenaris (T91)
 - EPRI (VM12)
 - Sam Sham, INL (709 NE code case material)

sCO₂ cycles are of wide interest: goal is to commercialize!

800

Supercritical CO₂ applications

- Low critical point (31°C/7.4 MPa) High, liquid-like density Flexible, small turbomachinery

triple p

10,000

1,000

100

10

200

pressure - P (bar)

solid

Feher, 1965 50% sCO₂ eff @ >720°C

Thermodynamics: Oxygen levels similar in steam/CO₂ Concern about high C activity at m-o interface

High carbon activity at P_{total} = 1 bar (What is P_{interface}?)

General conclusion: internal carburization concern for Fe-based alloys

sCO₂ compatibility focused on steels at 450°-650°C in RG CO₂

Tube furnace: 1 bar CO₂

500-h cycles

Autoclave: 300 bar sCO₂ 500-h cycles

Correct temperature and pressure

4-5 cm² alloy coupons

Same cycle frequency as autoclave

Box furnace: Lab. Air 500-h cycles (baseline)

"Keiser" rig: 500-h cycles, 1-43 bar CO₂

Studies at 800°-1200°C

Baseline of research grade (RG) CO_2 : $\leq 5 \text{ ppm } H_2O$ and $\leq 5 \text{ ppm } O_2$ industrial grade (IG) CO_2 : $18\pm16 \text{ ppm } H_2O$ and $\leq 32 \text{ ppm } O_2$

6

ORNL steel project started in August 2019

7

Baseline of research grade (RG) CO_2 : $\leq 5 \text{ ppm H}_2O$ and $\leq 5 \text{ ppm O}_2$

Mass change of 5-6 specimens in RG sCO₂ plotted

- One specimen of each alloy removed at 500 h for metallography
- High mass gains for 9-12%Cr steels in all cases
- Low mass gains for FCC steels except 316H at 650°C

- Ran 450°C experiment to 2,000 h for improved assessment

8

sCO₂ 600°C: 2021 explored some additional candidates

- 550°-600°C critical temperature
 - 30 MPa, RG CO₂
 - 4-6 specimens of each alloy
- Ni-based alloy 825 (Ni-31Fe-23Cr)
 - Small mass change (as expected)
 - Similar to advanced austenitic 709 (Fe-20Cr-25Ni)
- 253MA: higher Cr, Si + Ce/La
 - accelerating mass gain = FeO_x nodules...
- CF8C-Plus (cast 347): high Mn
 - Higher strength version of CF8C
 - Also accelerating mass gain

- 825: 40Ni-31Fe-23Cr-3Mo-1.7Cu-1Ti-0.5Mn-0.3Si
- CF8C-Plus: Fe-12.5Ni-19.5Cr-4Mn-0.7Nb-0.7Si-0.5Cu-0.3Mo-0.25N (ASTM spec.)
- 253MA: 65Fe-11Ni-21Cr-1.5Si-0.7Mn-0.3Mo0.15N-0.03Ce-0.01La

Measured rates in sCO₂ consistent with the literature

- Metric developed for Solar CSP
 Slow rate = OK for 100kh life
- Ni-based alloys all "good"
 Lifetime model: ≤ 800°C = 100kh
- Steel limitations
 - Ferritic-martensitic alloys <500°C
 - Austenitic alloys <600°C
 - Obvious jump in kinetics
 - Advanced austenitics, better
 - Value in 20-25%Cr, 20-25%Ni
 - Low values hard to measure

9-12Cr steels have similar rates in 276 bar steam

Scales on 9-12Cr steels after 1,000 h exposures at each temperature

- Fe-rich oxide in each case
 - Classic two-layer structure
 - Fe_3O_4 with low pO_2 in sCO_2
 - Internal oxidation zone
- Little benefit of higher Cr content in VM12 under these conditions

Light microscopy

Figure 3. Light microscopy of polished cross-sections of (a,c,e) Gr.91 and (b,d,f) VM12 after 1000 h in RG sCO₂ at (a,b) 450°C, (c,d) 550°C and (e,f) 650°C.

Scales on stainless steels after 1,000 h exposures at each temperature

- Cr-rich oxides in 5 of 6 cases
 - Thin, protective: difficult to image using light microscopy
- Fe-rich oxide for 316H at 650°C
 - Two-layer structure, but only inner layer was retained
- Strong benefit of increasing the Cr/Ni content in alloy 709
 - You get what you pay for!

Figure 4. Light microscopy of polished cross-sections of (a,c,e) 316H and (b,d,f) 709 after 1000 h in RG sCO₂ at (a,b) 450°C, (c,d) 550°C and (e,f) 650°C.

Light microscopy

Scales on stainless steels after 1,000 h exposures at each temperature

- Cr-rich oxides in 5 of 6 cases
 - Thin, protective
 - Cr depletion beneath scale
 - Nodules primarily Cr-rich
- Fe-rich oxide for 316H at 650°C
 - Two-layer structure, but only inner layer was retained
- Strong benefit of increasing the Cr/Ni content in alloy 709

709: 20Cr-25Ni

650°C

Figure 7. (a) SEM secondary electron image of 709 after 1000 h at 650°C in RG sCO_2 and (b-f) EDX maps of the same region.

Scanning electron microscopy/EDX maps

Scales on stainless steels after 1,000 h exposures at each temperature

- Cr-rich oxides in 5 of 6 cases
 - Thin, protective
- Fe-rich oxide for 316H at 650°C
 - Two-layer structure, but only inner layer was retained
 - Cr-rich oxide at metal-oxide interface with Cr depletion
 - Perhaps Ni metal incorporated
- Strong benefit of increasing the Cr/Ni content in alloy 709

316H: 16Cr-10Ni

650°C

Figure 6. (a) SEM secondary electron image of the inner scale formed on 316H after 1000 h at 650°C in sCO₂ and (b-f) EDX maps of the same region.

Scanning electron microscopy/EDX maps

Oxide thickness after 1,000 h exposures at each temperature

- Consistent with mass change data
- Large increase for 316H at 650°C
 - ~50% of oxide spalled!

Do we need new metrics for steel sCO₂ compatibility?

Current metrics:

How useful is this information in materials selection?

New metrics: C uptake & retained ductility

Room temperature tensile properties: 650°C/316H impact

316H/650°C: Drop in ductility Increase in YS Consistent with C ingress

FS/650°C: also degraded

650°C anneal: minor loss in ductility

/

Room temperature tensile properties: 650°C/316H impact

Bulk C content: major C increase at 650°C for 3 steels

650°C: thick Fe-rich oxides allowed C ingress 550°C: longer exposures needed

Bulk C content: major C increase at 650°C for 3 steels

650°C: thick Fe-rich oxides allowed C ingress 550°C: longer exposures needed

EPMA: measurements of C ingress for modeling

- Confirmed massive C uptake at 650°C for T91/316H
- Very little uptake at 450°C for both alloys
- Gradient observed at 550°C
- Collecting more EPMA data to feed modeling task

Initial steel modeling: Calculated average C profiles

Goal: predict 100,000 kh C ingress as a function of temperature for T91 and 316H

22

NACE 2022: Addition of $1\%O_2+0.1\%H_2O$: accelerates all !

Open symbol: RG sCO₂ **Filled: RG sCO₂ + 1%O₂ + 0.1%H₂O** All 300 bar

2019: Ni-based alloys 2-5X rate increase with impurities at 750°C

Based on CSP (solar) metric: all limited to <550°C with impurities 9-12Cr steels: high rates with or without impurities Rates for 709 (20Cr/25Ni): may not reflect steady state at 1000 h

Summary: sCO₂ is a challenging environment

- At 650°-800°C, Ni-based alloys appear compatible
- Steels have problem forming protective scales:
 - 9-12%Cr all conditions 450°-650°C
 - Fe-rich oxide formation observed in sCO₂
 - These steels form Cr-rich scale in air
 - 316H at 650°C in RG sCO₂
 - Carbon ingress + embrittlement
 - 709 formed Cr-rich oxide in all cases
 - Longer times at 650°C?
 - 310HCbN/alloy 25: no C ingress at 750°C
 - With O_2 impurities: all have problems!

Thank you!

All 650°C, 500 h, sCO₂

Alloy cnemical compositions (weight %)												
Alloy∍	…UNS#∍	Fe∍	·Cr∍	·Ni≯	Mo∍	·Mn∍	·Si	···C>	S(ppm)…Other		
Gr.91∍	···K90901∍	88.8 ³	·8.6›	·0.3›	0.9∍	0.46	0.35	0.10 ^{>}	···6→	0.2V,0.06Nb,0.045	δN¶	
12CrCoW→		83.3 [,]	11.5 →	·0.4>	0.4→	0.38	0.42 ^{>}	0.12 ^{>}	··· 3 ∍	1.6W,1.5Co,0.2V,0).04N¶	
316H∍	S31609∍	69.5 [,]	16.3 [,]	10.0»	2.0→	0.84	0.46	0.041 [,]	···6∍	0.3Cu,0.3Co,0.04	Ν¶	
709	···S31025»	51.3 [,]	20.1	25.2 ^{>}	1.5→	0.89 ⇒	0.4 1 ∍	0.064→	··· 3 ∍	0.2Nb,0.06Cu,0.15	5N¶	
(1) measured by inductively coupled plasma analysis and combustion analysis $<$ indicates below the detectability limit of $<0.01\%$												

25