The Effect of Impurities in Rich CO$_2$ Working Fluid on the Power Output of a 10 MW sCO$_2$ Gas Turbine Power Plant

Henry Saari
Associate Professor
Carleton University
Mechanical and Aerospace Engineering
Ottawa, ON, Canada

Ibrahim Ali
Ph.D
Carleton University
Mechanical and Aerospace Engineering
Ottawa, ON, Canada

The 7th International Supercritical CO$_2$ Power Cycles Symposium February 21, 2022 – February 24, 2022, San Antonio, Texas
sCO$_2$ Research at Carleton University

- Mechanical and Aerospace Engineering
 - Strong history of research and teaching in gas turbine technology
 - 4th year capstone projects
 - Graduate students
 - Petrusenko (2011) – The development of a high temperature sCO$_2$ corrosion test rig
 - Parks (2013) – Corrosion of candidate high temperature alloys in sCO$_2$
 - Wei (2014) – Meanline analysis of radial inflow turbines at design and off-design conditions
 - Daouk (2014) – Performance analysis and modeling of a printed circuit heat exchanger with air and carbon dioxide as working fluids
 - Martel Matos (2017) – Preliminary aerodynamic design of a sCO$_2$ centrifugal compressor
 - Strang (2018) – Aerodynamic design of a sCO$_2$ radial inflow turbine using meanline and computational methods
 - Ali (2021) – Health monitoring system for the 10 MW sCO$_2$ gas turbine power plant
 - Kaur (2021-) – Dynamic modelling of STEP cooling system/Heat exchanger modelling

- Natural Resources Canada (NRCan) – CanmetENERGY
 - R&D in clean fossil fuel technologies
 - Pilot-scale research facility
 - STEP facility support

- Design and development of advanced semi-closed and closed gas turbine cycles
sCO₂ Research at Carleton University

- 2006-11: 100 MWₑ plant
- 2011-12: 10 MWₑ plant
- 2012-16: 250 kWₜₜh pilot-scale, 10 MWₑ plant
- 2016-17: hiatus
- 2017-19: 250 kWₜₜh pilot-scale, 10 MWₑ plant, US DOE STEP Project Support
- 2019-: 100 MWₑ plant, turbomachinery scaling (50-300/500 MWₑ), US DOE STEP Project Support
Health monitoring system for (10 MWₐ) sCO₂ power plant

- Artificial neural network (ANN)
 - Capture effects of impurities and fouling effects on cycle power and efficiency
 - Property prediction
 - Compressor inlet changes on cycle efficiency
 - Effect of impurities on power output
 - Fouling effects
 - Impacts on components and efficiency

Other considerations
- Oil monitoring, vibration monitoring

10 MWₑ STEP facility/10 MWₑ Carleton Design
- “baseline” for this work
Motivation and Goal

Investigate the effect of the impurities in the rich 99% CO$_2$ working fluid for 10 MW sCO$_2$ gas turbine power plant

- **Non-condensable impurities:**
 - Nitrogen (N$_2$)
 - Oxygen (O$_2$)
 - Carbon monoxide (CO)
 - Argon (Ar)

- **Condensable impurities:**
 - Sulfur dioxide (SO$_2$)

Considering these affected impurities on:
- Power output (Operation)
- Turbomachinery degradation (Design stages)
Carleton University Brayton Cycle Loop (CUBCL)
10 MW sCO₂ gas turbine

Liquefied Saturation Line
Vapour Saturation Line
Critical Point

Turbine $\dot{m} = 104.5$ kg/s
$P = 23.72$ MPa, $PR = 2.64$
Primary heat input 22.2 MW

HTR
$P = 23.99$ MPa
$\dot{m} = 104.5$ kg/s

LTR
$P = 23.99$ MPa
$\dot{m} = 70.3$ kg/s
15.2 MW

Main compressor inlet
$T = 308.15$ K, $P = 8.55$ MPa
$\dot{m} = 70.3$ kg/s, $PR = 2.82$

Recompressor
$\dot{m} = 34.2$ kg/s
$PR = 2.76$

Cooler

LTR hot side stream
$P = 8.69$ MPa

US Department of Energy
The design point of the main compressor inlet:

- Mass flow rate (\dot{m}) = 70.3 kg/s
- Density (ρ) = 619.06 kg/m3
- Pressure ratio (P_2/P_1) = 2.82
The pure CO$_2$ at main compressor inlet at $T=308.15$ K and $P=8.55$ MPa has a density of $\rho =619.06$ kg/ m3.
REFPROP Software

Commercial tool from the US National Institute of Standards and Technology (NIST)

Version 10 is used to calculate the CO₂ properties and mixtures

The accurate to within 0.03% of the density near critical point with Maximum error of 0.2% for the working region of the cycle
The density of the working fluid changing dramatically as a function of the total impurity concentration effects the power output

\[\dot{m}_{\text{main-comp}} = \rho \ast A \ast v \]

Where \(\dot{m} \) mass flow rate, \(\rho \) the density and \(A \) the cross suction area.

\[P_{\text{el}} = \dot{m}(h_6 - h_7)_{t} - \dot{m}(h_2 - h_1)_{\text{main-comp}} - \dot{m}(h_{12} - h_{11})_{\text{re-comp}} \]

Where \(P_{\text{el}} \) is electrical power and \(h \) the enthalpy.
Density reduction at the main compressor inlet at different concentrations

@ T = 308.15 K
Shows the degree of power loss due to impurities at different concentrations in rich 99% CO₂ working fluid

<table>
<thead>
<tr>
<th>Component</th>
<th>Density kg/m³</th>
<th>(\dot{m}_{\text{main,comp}}) kg/s</th>
<th>Cycle η %</th>
<th>Power loses %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure CO₂</td>
<td>619.06</td>
<td>70.3</td>
<td>47.9</td>
<td>0</td>
</tr>
<tr>
<td>99% CO₂, 0.2%Ar, 0.2% O₂, 0.2% CO, 0.4% N₂</td>
<td>500.46</td>
<td>56.8</td>
<td>40.7</td>
<td>7.1</td>
</tr>
<tr>
<td>99% CO₂, 0.2%Ar, 0.2% O₂, 0.2% N₂, 0.4% CO</td>
<td>503.59</td>
<td>57.1</td>
<td>40.9</td>
<td>6.9</td>
</tr>
<tr>
<td>99% CO₂, 0.2%Ar, 0.2% N₂, 0.2% CO, 0.4% O₂</td>
<td>509.10</td>
<td>57.8</td>
<td>41.3</td>
<td>6.6</td>
</tr>
<tr>
<td>99% CO₂, 0.2%N₂, 0.2% O₂, 0.2% CO, 0.4% Ar</td>
<td>512.49</td>
<td>58.1</td>
<td>41.5</td>
<td>6.4</td>
</tr>
<tr>
<td>99% CO₂, 0.2%Ar, 0.2% O₂, 0.2% CO, 0.4% SO₂</td>
<td>579.16</td>
<td>65.7</td>
<td>45.5</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Results

Density reduction at the main compressor inlet at different concentrations

@ T= 308.15 K

Design point main compressor inlet

- Pure CO2
- 99% CO2, 0.1%N2, 0.1% O2, 0.1%CO, 0.7% Ar
- 99% CO2, 0.1%N2, 0.1% O2, 0.1%CO, 0.7% O2
- 99% CO2, 0.1%N2, 0.1% O2, 0.1%CO, 0.7% CO
- 99% CO2, 0.1%N2, 0.1% O2, 0.1%CO, 0.7% N2
- 99% CO2, 0.1%N2, 0.1% O2, 0.1%CO, 0.7% SO2
Results

Shows the degree of power loss due to impurities at different concentrations in rich 99%CO\(_2\) working fluid

<table>
<thead>
<tr>
<th>Component</th>
<th>Density kg/m(^3)</th>
<th>(\dot{m}_{\text{main-comp}}) kg/s</th>
<th>Cycle (\eta) %</th>
<th>Power loses %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure CO(_2)</td>
<td>619.06</td>
<td>70.3</td>
<td>47.9</td>
<td>0.0</td>
</tr>
<tr>
<td>99% CO(_2), 0.1% Ar, 0.1% O(_2), 0.1%CO, 0.7% N(_2)</td>
<td>488.99</td>
<td>55.5</td>
<td>40.1</td>
<td>7.8</td>
</tr>
<tr>
<td>99% CO(_2), 0.1% Ar, 0.1% O(_2), 0.1%N(_2), 0.7% CO</td>
<td>498.14</td>
<td>56.5</td>
<td>40.6</td>
<td>7.3</td>
</tr>
<tr>
<td>99% CO(_2), 0.1% Ar, 0.1% N(_2), 0.1%CO, 0.7% O(_2)</td>
<td>514.77</td>
<td>58.4</td>
<td>41.6</td>
<td>6.3</td>
</tr>
<tr>
<td>99% CO(_2), 0.1%N(_2), 0.1% O(_2), 0.1%CO, 0.7% Ar</td>
<td>524.7</td>
<td>59.5</td>
<td>42.2</td>
<td>5.7</td>
</tr>
<tr>
<td>99% CO(_2), 0.1% Ar, 0.1% O(_2), 0.1%CO, 0.7% SO(_2)</td>
<td>614.87</td>
<td>69.8</td>
<td>47.7</td>
<td>0.2</td>
</tr>
</tbody>
</table>
The effect of SO₂ and N₂ concentrations of 1% on the density of rich 99% CO₂ working fluid

@ T= 308.15 K

Design point main compressor inlet

Density (kg/m³)

Pressure (MPa)

Pure CO₂

1% N₂

1% SO₂
The effects of SO₂ and N₂ concentrations of 1% on the density and overall cycle efficiency of rich 99% CO₂

<table>
<thead>
<tr>
<th>Component</th>
<th>Density kg/m³</th>
<th>$\dot{m}_{\text{main comp}}$ kg/s</th>
<th>Cycle η %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure CO₂</td>
<td>619.06</td>
<td>70.3</td>
<td>47.9</td>
</tr>
<tr>
<td>99% CO₂, 1% N₂</td>
<td>478.11</td>
<td>54.2</td>
<td>39.4</td>
</tr>
<tr>
<td>99% CO₂, 1% SO₂</td>
<td>642.56</td>
<td>72.9</td>
<td>49.4</td>
</tr>
</tbody>
</table>
Conclusions

Analysing the effect of impurities of the working fluid would beneficial the 10 MW sCO$_2$ gas turbine designers and operators.

- **Non-condensable impurities:**
 - The present of impurities N$_2$, O$_2$, CO and Ar in the working fluid effected the turbine performance
 - N2 is found as an affective impure on the power output
 - A mixture of 99% CO$_2$ and 1% N$_2$ caused maximum density reduction almost 23% and reduced the cycle efficiency to 8.5%.

- **Condensable species:**
 - Concentration of 1% of Sulfur dioxide in 99% CO$_2$ would:
 - Increase the density by 23.5 kg/m3
 - and the power output up to 1.4%
 - An increase in SO$_2$ concentration in supercritical CO$_2$ region rapidly degrades turbomachinery’s component by corrosion.
 - Understanding the concentration of impurities is vital to avoiding corrosion-related damage and improving the efficiency

- **Other considerations:**
 - Effect on cycle operation – shift in operation points
 - Cycle performance, temperatures
Thank you
Questions