

The Effect of Impurities in Rich CO₂ Working Fluid on the Power Output of a 10 MW sCO₂ Gas Turbine Power Plant

Henry Saari Associate Professor Carleton University Mechanical and Aerospace Engineering Ottawa, ON, Canada Ibrahim Ali Ph.D Carleton University Mechanical and Aerospace Engineering Ottawa, ON, Canada

1

The 7th International Supercritical CO₂ Power Cycles Symposium February 21, 2022 – February 24, 2022, San Antonio, Texas

sCO₂ Research at Carleton University

Canada's Capital University

- Mechanical and Aerospace Engineering
 - Strong history of research and teaching in gas turbine technology
 - 4th year capstone projects
 - Graduate students
 - Petrusenko (2011) The development of a high temperature sCO₂ corrosion test rig
 - Parks (2013) Corrosion of candidate high temperature alloys in sCO₂
 - Wei (2014) Meanline analysis of radial inflow turbines at design and off-design conditions
 - Daouk (2017) Performance analysis and modeling of a printed circuit heat exchanger with air and carbon dioxide as working fluids
 - Martel Matos (2017) Preliminary aerodynamic design of a sCO₂ centrifugal compressor
 - Strang (2018) Aerodynamic design of a sCO₂ radial inflow turbine using meanline and computational methods
 - Ali (2021) Health monitoring system for the 10 MW sCO₂ gas turbine power plant
 - Kaur (2021-) Dynamic modelling of STEP cooling system/Heat exchanger modelling
- Natural Resources Canada (NRCan) CanmetENERGY
 - R&D in clean fossil fuel technologies
 - Pilot-scale research facility
 - STEP facility support
- Design and development of advanced semi-closed and closed gas turbine cycles

sCO₂ Research at Carleton University

- 2006-11: 100 MW_e plant
- 2011-12: 10 MW_e plant
- 2012-16: 250 kW_{th} pilot-scale, 10 MW_e plant
- 2016-17: hiatus
- 2017-19: 250 kW_{th} pilot-scale, 10 MW_e plant, US DOE STEP Project Support
- 2019-: 100 MW_e plant, turbomachinery scaling (50-300/500 MW_e), US DOE STEP Project Support

sCO₂ Research at Carleton University – This Work

Canada's Capital University

- Health monitoring system for (10 MW_e) sCO₂ power plant
 - Artificial neural network (ANN)
 - Capture effects of impurities and fouling effects on cycle power and efficiency
 - Property prediction
 - Compressor inlet changes on cycle efficiency
 - Effect of impurities on power output
 - Fouling effects
 - Impacts on components and efficiency
 - Other considerations
 - Oil monitoring, vibration monitoring
- 10 MW_e STEP facility/10 MW_e Carleton Design
 - "baseline" for this work

Motivation and Goal

Investigate the effect of the impurities in the rich 99% CO_2 working fluid for 10 MW sCO₂ gas turbine power plant

- Non-condensable impurities:
 - > Nitrogen (N₂)
 - > Oxygen (O₂)
 - > Carbon monoxide (CO)
 - > Argon (Ar)
- * Condensable impurities:
 - Sulfur dioxide (SO₂)

Considering these affected impurities on:

- > Power output (Operation)
- > Turbomachinery degradation (Design stages)

Carleton University Brayton Cycle Loop (CUBCL) 10 MW sCO₂ gas turbine

Canada's Capital University

Carleton

UNIVERSITY

US Department of Energy

CUBCL 10 MW sCO₂ gas turbine turbomachinery inlet conditions

Canada's Capital University

arleton

Turbomachinery	Temperature (K)	Pressure (MPa)	η %
Main compressor	308.15	8.55	82%
Recompressor	361.15	8.69	78%
Turbine	973.15	23.72	85%

The design point of the main compressor inlet:

- Mass flow rate (m) = 70.3 kg/s
- Density (ρ) = 619.06 kg/m³
- Pressure ratio $(P_2/P_1) = 2.82$

Main and Recompressor Inlet Condition

Canada's Capital University

The pure CO₂ at main compressor inlet at T=308.15 K and P=8.55 MPa has a density of ρ =619.06 kg/ m³

REFPROP Software

Commercial tool from the US National Institute of Standards and Technology (NIST)

Version 10 is used to calculate the CO₂ properties and mixtures

The accurate to within 0.03% of the density near critical point with Maximum error of

0.2% for the working region of the cycle

Results

The density of the working fluid changing dramatically as a function of the total impurity concentration effects the power output

 $\dot{m}_{main-comp} = \rho * A * v$

Where \dot{m} mass flow rate, ρ the density and A the cross suction area.

$$P_{el} = \dot{m}(h_6 - h_7)_t - \dot{m}(h_2 - h_1)_{main-comp} - \dot{m}(h_{12} - h_{11})_{re-comp}$$

Where P_{el} is electrical power and h the enthalpy

Density reduction at the main compressor inlet at different concentrations

Results

Shows the degree of power loss due to impurities at different concentrations in rich 99%CO₂ working fluid

Component	Density kg/m³	ṁ _{main_comp} kg/s	Cycle η %	Power loses %
Pure CO ₂	619.06	70.3	47.9	0
99% CO ₂ , 0.2%Ar, 0.2% O ₂ , 0.2% CO, 0.4% N ₂	500.46	56.8	40.7	7.1
99% CO ₂ , 0.2%Ar, 0.2% O ₂ , 0.2% N ₂ , 0.4% CO	503.59	57.1	40.9	6.9
99% CO ₂ , 0.2%Ar, 0.2% N ₂ , 0.2% CO, 0.4% O ₂	509.10	57.8	41.3	6.6
99% CO ₂ , 0.2%N ₂ , 0.2% O ₂ , 0.2% CO, 0.4% Ar	512.49	58.1	41.5	6.4
99% CO ₂ , 0.2%Ar, 0.2% O ₂ , 0.2% CO, 0.4% SO ₂	579.16	65.7	45.5	2.4

Density reduction at the main compressor inlet at different concentrations

Results

Shows the degree of power loss due to impurities at different concentrations in rich $99\%CO_2$ working fluid

Component	Density kg/m³	ṁ _{main-comp} (kg/s)	Cycle η %	Power loses %
Pure CO ₂	619.06	70.3	47.9	0.0
99% CO ₂ , 0.1%Ar, 0.1% O ₂ , 0.1%CO, 0.7% N ₂	488.99	55.5	40.1	7.8
99% CO ₂ , 0.1%Ar, 0.1% O ₂ , 0.1%N ₂ , 0.7% CO	498.14	56.5	40.6	7.3
99% CO ₂ , 0.1%Ar, 0.1% N ₂ , 0.1%CO, 0.7% O ₂	514.77	58.4	41.6	6.3
99% CO ₂ , 0.1%N ₂ , 0.1% O ₂ , 0.1%CO, 0.7% Ar	524.7	59.5	42.2	5.7
99% CO ₂ , 0.1%Ar, 0.1% O ₂ , 0.1%CO, 0.7% SO ₂	614.87	69.8	47.7	0.2

The effect of SO_2 and N_2 concentrations of 1% on the density of rich 99% CO_2 working fluid

15

The effects of SO_2 and N_2 concentrations of 1% on the density and over all cycle efficiency of rich 99% CO_2

Component	Density kg/m³	ṁ _{main_comp} kg/s	Cycle η %
Pure CO ₂	619.06	70.3	47.9
99% CO ₂ , 1% N ₂	478.11	54.2	39.4
99% CO ₂ , 1% SO ₂	642.56	72.9	49.4

Canada's Capital University

Conclusions

Analysing the effect of impurities of the working fluid would beneficial the 10 MW sCO₂ gas turbine designers and operators.

Non-condensable impurities:

- The present of impurities N₂, O₂, CO and Ar in the working fluid effected the turbine performance
- N2 is found as an affective impure on the power output
- A mixture of 99% CO₂ and 1% N₂ caused maximum density reduction almost 23% and reduced the cycle efficiency to 8.5%.

• Condensable species:

- Concentration of 1% of Sulfur dioxide in 99% CO₂ would:
- Increase the density by 23.5 kg/m³
- and the power output up to 1.4%
- An increase in SO₂ concentration in supercritical CO₂ region rapidly degrades turbomachinery's component by corrosion.
- Understanding the concentration of impurities is vital to avoiding corrosion-related damage and improving the efficiency

• Other considerations:

- Effect on cycle operation shift in operation points
- Cycle performance, temperatures

Canada's Capital University

Thank you

Canada's Capital University

Questions