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Pressure Gain Combustion/Rotating Detonation Engine 

Features and Cycle Advantage 

PGC-RDE Cycle Advantage 
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Aerojet Rocketdyne RDE Development Progress 

Use of a plasma system to improve efficiency 

and allow air-breathing operation without 

supplemental oxygen 

Initiating and maintaining continuous 

detonation across a range of effective 

operating conditions 

Efficient energy conversion and 

scaling 

2010 Proof of Concept 

2010 Multiple 

Propellants 

2011 Plasma System 

Integration 

DARPA 2012 Code 

Anchoring Data 

Future 

Optimization 

DARPA 2013 Liquid Fuel Demonstration 

DARPA 2013 Vulcan Exhaust Probes 
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Detonation Behavior Characterized Across Broad Range of 

Conditions 

5 MHz High Speed Data High Speed Video 

Multiple propellants (both gaseous and liquid fuels) 

• Air, enriched air and oxygen 

• Methane, ethane, hydrogen, JP-8 and JP-10 

• Equivalence ratio from 0.4 to 1.2 

• 6X throttling range 

 

Dozens of hardware configurations up to 21 cm in diameter 

 

With and without transient plasma augmentation 

• Incorporating a plasma augmentation system in the RDE increased 

wave velocity and minimized the need for air enrichment to sustain 

detonation 

 
Testing indicates wide variety of behavior at identical flow conditions 

• Highly dependent on engine configuration 
 

GOX-Methane 
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RDE Natural Gas Testing (2012) Video 
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•By replacing conventional gas turbine burners with rotating detonation 

combustors, equivalent thermal output can be generated with 14% less fuel 

consumption. 

 

•For Natural Gas Combined Cycle baseline plant conditions (DOE/NETL Case #13), 

plant efficiency (LHV) is estimated to improve from 55.7% to approximately 61%.  

Initial Look at PGC/RDE Benefits and Impact 
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Pressure Gain Combustion/Rotating Detonation Engine: 

ARPA-E Project Overview 

Goal: Achieve 15% reduction in Natural Gas Power Plants Specific Fuel Consumption 
(SFC) while simultaneously reducing NOX emissions.  

Concept/Innovation: Replace conventional burners with rotating/continuous 
detonation combustors 

Impacts: Decrease SFC by 10-20%  for ground base power generation.  15% 
reduction in SFC equates to:  

• 1.2x1012 scf/yr reduction in natural gas use in U.S. (3% of power grid) 

•  6.0x107 metric tons of CO2 emissions reduction per year 

•  5 million dollars per year savings in reduced fuel cost per large scale turbine in 
service (Frame 7FA)  

Key Risks and Mitigation:  Efficient detonation without supplemental oxygen; to be 
obtained through hot-fire tests. 

TRL: From 2 to 3 

Forward Plans: Implement “Technology to Market Plan” by securing government and 
commercial partnering to  enable testing in a gas turbine engine 
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UTRC Jet Burner Test Rig is Being Used to Simulate 
Gas Turbine Conditions 
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Initial Look at Applying an RDE to sCO2 Cycles 
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•A recompression Brayton cycle with CO2 as the working fluid was modeled with 

and without rotating detonation. 

• Natural gas and oxygen  are combusted in an RDE and the exhaust is 

directly mixed with recycled CO2 

• Introduction of natural gas and oxygen into the sCO2 loop requires 

water/impurity separation and CO2 removal from the loop 

•Because of pressure gain combustion in the 

RDE, CO2 compression is significantly 

reduced and/or turbine pressure ratio is 

increased 
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Super- and Sub-critical Recompression Brayton Cycle 

Analysis 

• Cycle analysis has been conducted using AspenPlus with REFPROP v9.1 

• Methodology suggested by NETL/DOE Quality Guidelines for Energy 

Systems Studies (QGESS) documents was used 

• Efficiency values for F, H and J class turbines were taken from DOE/NETL-

341/061013 

• Without carbon capture, RDE-based J class turbine offers 67% LHV efficiency as 

compared to 62.6% offered by conventional combustion 

• The RDE-based sCO2 cycle has a net plant LHV efficiency of 70% 

Solid symbols = no carbon capture 

Open symbols = carbon capture 

Triangle = RDE in sCO2 cycle 

Supercritical CO2 cycle Subcritical CO2 cycle 
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LCOE Modeling has been completed 

• Levelized cost of electricity (LCOE) has been modeled using Power Systems 

Financial Model (PSFM v6.6) 

• Material and equipment cost for RDE based J Class turbine was assumed to 

be 10% higher than conventional adiabatic combustors 

• Labor cost was scaled proportionally to capital costs 

•RDE-based power plants promise lower LCOE than conventional natural gas 

power plants 

• For the same power, reduced fuel consumption is the primary driver for 

reduced costs. 

35% 
22% 
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Summary 

Since 2010, Aerojet Rocketdyne has conducted over 520 tests of multiple 

configurations of a rotating detonation engine 

 

AspenPlus cycle analysis of RDE-based power plants has been completed. 

• By replacing conventional gas turbine burners with rotating detonation 

combustors, equivalent thermal output can be generated with 14% less 

fuel consumption 

• For Natural Gas Combined Cycle baseline plant conditions, plant 

efficiency (LHV) is estimated to improve from 55.7% to 61% with carbon 

capture and from 62.6% to 67% without carbon capture 

• The RDE-based sCO2 cycle has a net plant LHV efficiency of 70% 

 

Power Systems Financial Model has been used to determine LCOE for 

various cycles 

• RDE-based sCO2 cycle has 35% lower LCOE than a conventional 

NGCC plant 

 

Advancements in technology to interface the RDE with compressors and 

turbines are needed prior to implementation 
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