

Direct-fired Oxy Combustion in sCO₂ Power Cycles

Direct vs Indirect-Fired sCO₂ Cycle

Introduction

Advantages of a direct-fired sCO2 power cycle

- Compact hardware
- Greater efficiency
- Nearly 100% carbon capture

Challenges

- Lack of validated combustion modeling techniques
- Combustor design best practices are still developing
- High pressure and temperatures lead to costly hardware (think rocketry)

Advantages of sCO₂ Power Cycles

• High fluid densities lead to compact turbomachinery

Advantages of sCO₂ Power Cycles

• Offer +3 to +5 percentage points over supercritical steam for indirect coal fired applications

Courtesy Thar Energy, DE-FE0026273

2.5MWt Sunshot Heater Inconel 740H Bare Tube HX

Advantages of sCO₂ Power Cycles

Cogeneration Plant

Nearly 100% carbon capture

Fuel

sCO₂

Turbine

Combustor

Direct-fired

➤ CO₂
Storage

Recuperator

Pump

Water

Separator

Carbon Capture Facility

https://www.eia.gov

Petra Nova power plant (Houston) 240 MW, 90% CC, \$1 billion retrofit cost

Cooler

Compressor

Project Objectives

- Design a 1 MW thermal oxy-fuel combustor capable of generating 1200°C outlet temperature
- Manufacture combustor, assemble test loop, and commission oxy-fuel combustor
- Evaluate and characterize combustor performance using optical access for advanced diagnostics

Cycle Conditions

- Combustor Inlet and Outlet temperatures dictated by reviewing previous cycle modeling work done at SwRI
- Combustor inlet temperature: 700°C at 200 bar
- Combustor outlet temperature: 1200°C
- Achieves a plant efficiency comparable to a NGCC power plant

Combustor Schematic

Combustor Design Key Considerations

- Mechanical casing
- Fluid flow path
- Fuel injector
- Oxygen injection
- Combustor liner thermal management
- Optical access
- Acoustic resonance
- Instrumentation
- Design for additive manufacturing

Oxygen System

- Guidance from personnel at NASA Stennis and White Sands, review from project partner Air Liquide
- LOX tank with cryogenic pump and ambient vaporizer
- Oxygen injection upstream of fuel injector

Laser Ignition System

- Class 4 Quantel Qsmart Twins
 - 2x380mJ @ 532nm, I0Hz
- Gen 2 Laser Ignition Probe Improved lens protection & beam alignment

Laser Ignition tests

Laser Kernel Behavior in sCO₂

Gupta et *al*. 2022

Laser Ignition tests

Laser Ignition tests

Fuel Injector

Combustor Cooling

 CO_2 bypass gas enters annulus from a dedicated line (highlighted in blue) with flow control, allowing remote manipulation of combustor liner temperatures

Water Separator

Other contaminants like carbonic acid need to be sensed and removed as well!

Combustor Fabrication

Combustor Rig

Chemical Kinetics

Georgia Tech and University of Central Florida each created combustion mechanisms for the sCO2 oxy-combustion system.

Figure 1-2. The Conversion of the 6-Species Kinetic Model to a 13-Species Kinetic Model

Figure 1-6. Predicted Mole Fraction O₂ Versus Time Results

Figure 1-7. Predicted Mole Fraction CO Versus Time Results

Figure 1-8. Predicted Mole Fraction CO₂ Versus Time Results

0.05003

0.93738

 O_2

 CO_2

Cantera - 13 Sp

Cantera - 6 Speci CFX - 13 Species

1300

Figure 1-5. Predicted Mole Fraction CH₄ Versus Time Results

0.01 0.015

time (s)

0.005

Turbulent Combustion

• Combustion is associated with chemical reaction, and transport phenomena

Length scale varies

- Smallest Kolmogorov length scale to integral turbulent length scale
- Laminar flame thickness
- <u>Time scale varies</u>
 - Kolmogorov time scale to integral turbulent time scale
 - $\circ \qquad \text{Laminar flame speed}$

CONVERGE CFD

- To completely solve the combustion process , all **chemical species and reactions** need to be included and both time and length scale needs to be resolved
- To do that, Direct Numerical Simulation (DNS) needs to be performed which is computationally prohibitive
- To make it computationally feasible; combustion and turbulence modeling is required
- Careful selection of turbulence chemical kinetics models is needed! Flame speed measurements are very uncertain!

Turbulence Modeling

- Turbulent eddies in the flow enhances the rate of mixing of momentum, energy, and species
- These eddies are present at different length scales from small to large
 - **Reynolds-Averaged Navier-Stokes (RANS):** This model is used to account for mixing by introducing turbulent diffusion coefficients for momentum, energy, and species
 - Large Eddy Simulations (LES) turbulence model: Resolve the large length scale and model the small length scale
- Turbulence also affects flame speed, but that is worthy of its own presentation

Grid Sensitivity

- The chemical kinetic simulations also explored grid dependence.
- 13 species mechanism were used, UCF and Georgia Tech have since published newer models.
- Results were a general understanding of the minimum resolution that supports adequate chemical resolution.
- Both reaction mechanisms adequately modeled species and temperature changes.
- Grid size requirements are dependent in part on turbulence models.

Figure 1-9. Examples of Coarse (left) and Fine (right) Meshing Results for Premixed Chamber

Table 1-3. Mesh Statistics for Premixed Chamber

Elements	Element Multiplication Factor
0.05E+06	1.0
0.40E+06	8.0
0.85E+06	17.0
1.30E+06	26.0
2.30E+06	46.0
1.34E+06	26.8
6.17E+06	122.0

Figure 1-13. CO Mass Fractions Contoured to Show the Grid Resolution of the Combustion Reaction. Coarse Grid (left) and Fine Grid (right)

Figure 1-10. Predicted Temperature Versus Time Results for Various Resolutions

Figure 1-11. Predicted Mole Fraction of CH4 Versus Time Results for Various Resolution

Figure 1-12. Predicted Mole Fraction of CO Versus Time Results for Various Resolutions

Flow Field

- Swirler design, combustor shape, fuel injection, and cooling flow allocation control the flow field inside the combustor
- Light-off should be conducted at low temperatures and pressures. But what about real gas effects? Operation near the critical point is poorly understood
- Fuel injection and flow must accommodate all operating conditions, including startup.
- Relevant fluid physics need to be modeled with increasing fidelity as design process proceeds.

Design and Optimization

Preliminary approaches can explore the design space using low-cost, <u>low-fidelity</u> steady RANS simulations.

Steady vs. Unsteady Modeling

Steady RANS Simulation

Unsteady DDES Simulation (~5-10x cost per run)

Combustor Design

When switching from RANS to an unsteady simulation are the key flow features preserved? In our case:

- Swirl Yes
- Mixing No

RANS Simulation

DDES Simulation

Streamlines Comparison

Unsteady Combustion Simulations

Unsteady combustion simulations show oscillatory shear layer mixing and hot gas impingement on combustor outer walls.

Unsteady Combustion Simulations

Time-averaged DES results

Notional Wall Temperatures

Conservative adiabatic simulations suggest peak combustor wall temperatures near 1000 C, which will be decreased further with exterior cooling flows.

Contact Information:

Brian.Connolly@swri.org

Steve.White@swri.org

