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SETO Driving Toward Administration Decarbonization Goals

» Reduce hardware and soft costs of solar electricity for all Americans to enable an affordable
carbon-free power sector by 2035.

» Enable inverter-based technologies to provide essential grid services and black start capabilities while
demonstrating the reliable, resilient and secure operation of a 100% clean energy grid.

Accelerate solar deployment and associated job growth by opening new markets, reducing
regulatory barriers, providing workforce training, and growing U.S. manufacturing.

A A

Center energy justice by reducing environmental impacts, removing barriers to equitable solar
access, and supporting a diverse and inclusive workforce.

Support a decarbonized industrial sector with advanced concentrating solar-thermal technologies
and develop affordable renewable fuels produced by solar energy.
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. CSP affects communities.

SETO impacts
communities through
awardees

The JUStice40

Initiative states that “40
percent of the overall

benefits” of certain federal
investments flow to
disadvantaged communities.
These investments include
those for clean energy and
energy efficiency that are
allocated by SETO.

SMART goals
guide impact

Links: Overview of Justice40 initiative; Executive Order 14008
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https://www.whitehouse.gov/environmentaljustice/justice40/
https://www.regulations.gov/document/EPA-HQ-OPPT-2021-0202-0012

Concentrating Solar-Thermal Technology for Power and Heat-
Based Applications

BASELOAD POWER
(212 hours of storage)
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Thermally-Driven Industrial Processes:
* Desalination

+ Enhanced Oil Recovery

» Agriculture and Food Processing
* Fuel and Chemicals Production
* Mining and Metals Processing
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2030 CSP Goal

The office’s 2030 cost targets for CSP baseload (=12 hours of storage) plants
will help make CSP competitive with other dispatchable generators.

25¢

BASELOAD
21¢ (=12 hours of storage) U.S. CSP deployment
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*Levelized cost of energy (LCOE) progress and targets are calculated based on Study prior to passage of the Inflation Reduction Act
scenarios without federal tax credit or state/local incentives.
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A Pathway To 5¢ per kWh for CSP

9.5¢ .

2019 Real LCOE (U.S. Cents/kWh)

Heliostat
Consortium
NREL/SNL sCO, RCBC ;
Particle CSP
2020 Baseline Low-Cost Solar Low-Cost Power High-Efficiency Low-Cost TES 2030
Field ($50/m2) and  Block and BOP Power Cycle ($15/kWh,), CSP Goal
Site Improvement ($900/kWe) (50% net)* Receiver ($120/kW,),
($10/m2) O&M ($40/kW .-yr)
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SWRI/GE’s SunShot Turbine

Moore, Jeff. Development of a High-Efficiency Hot Gas Turbo-expander and Low-Cost Heat Exchangers for
Optimized CSP Supercritical CO2 Operation. Unlted States N p 2019. Web doi: 10 2172/1560368.
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Achieved targets of 1,320°F, 27,000 rpm, and 3,500 psi in separate tests
37.5 hours of turbine operation

sCO, turbo-expander and heat exchangers successfully fabricated
Replicated transient conditions consistent with CSP use

Figure 137: Operating Screen at 1,320°F
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GE & SwRI’s Apollo sCO, Centrifugal Compressor

Program Objective: Demonstrate a Compressor Package
compact high efficiency compressor + High efficiency of operation
ith a wid bility range for a sCO, cycle + Compact package i
with a wide operaolliity rang > CY! « Wide input operation conditions
+ Layout optimization
Multi-Stage / Aero Design

Axial Main ™\ « Optimized impeller design

* Fixed speed operation
Recompressor Compressur [~ « Variable inlet guide vanes
Hybrid Film Seal
[— « Sub-mills clearance
* Non degrading performance
Hybrid Gas Bearing
* Directly coupled to expander
(27000 rpm]
] + Rotor dynamic stability
Bearing - Test Loop

Gearbox/
Generator

Bearing

Shoft  Thermal

End Seal Mﬂagﬂijngﬂm Balance « Transient & off-design
g Piston y, performance of compressor
package

MW scale compressor design and test

720 kg/m3, a world record for compressor density

Design and fabrication of 80% design point efficiency compressor

Nearly all components behaved well mechanically demonstrating high
pressure/density compression is viable beyond traditional rotor dynamics
limits

Identified major R&D priorities including:
* Dry Gas Seals materials development
» CO, property and measurement understanding near the liquid-
vapor dome
+ Impact of deflections within internal hardware

1) Neveu, Joshua D., et al. "Operation and Control of a Supercritical CO2 Compressor." Turbo Expo: Power for Land, Sea, and Air. Vol. 85048. American Society of Mechanical Engineers, 2021.
2) Cich, Stefan D., et al. "Mechanical Design and Testing of a 2.5 MW SCO2 Compressor Loop." Turbo Expo: Power for Land, Sea, and Air. Vol. 85048. American Society of Mechanical Engineers, 2021.
3) Mortzheim, Jason, et al. "Challenges with measuring supercritical CO2 compressor performance when approaching the liquid-vapor dome." Turbo Expo: Power for Land, Sea, and Air. Vol. 85048. ASME, 2021.
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Development of an Ultra-High Efficiency Integrally-Geared Supercritical CO, Compander

Hanwha Techwin
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Highest pressure sCO, DGS in the world

Highest pressure integrally geared expander

Highest density integrally geared expander

Highest density radial expander

Highest temperature radial expander at pressure > 100 bar

Highest pressure integrally geared compressor

Highest density integrally geared compressor

First functional sCO2 compressor driven turbine power cycle loop > 1MW

U.S. DEPARTMENT OF ENERGY  SOLAR ENERGY TECHNOLOGIES OFFICE 10



Detailed Cycle and Plant Modeling for CSP cases

y H . . . . .
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Air Cooler Approach Temperature [C]

Neises, Ty. "Steady-state off-design modeling of the supercritical carbon dioxide recompression cycle for concentrating solar power
applications with two-tank sensible-heat storage." Solar Energy 212 (2020): 19-33.

Augustine, Chad, Kurup, Parthiv, Mehos, Mark, and Neises, Ty. FY19-FY21 Concentrating Solar Power Systems Analysis Final Report.
United States: N. p., 2023. Web. doi:10.2172/1923360.

https://github.com/NREL/SAM/blob/develop/samples/CSP/sco2 analysis python V2/example/User Guide.pdf
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https://github.com/NREL/SAM/blob/develop/samples/CSP/sco2_analysis_python_V2/example/User_Guide.pdf
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SETO’s Gen3 CSP Program Structure (2017)

Component Level

Integrated Solids

Design and System Design
S Testing
= t Level Down-
0 omponent Leve . )
TOPIC 1 | Integrated Liquids S ST B Selection to 1 Integrated S\gt_lt_am Fonstructlon
Testing Path and Testing

Component Level
Design and System Design

Teig 2021 2023-2025

Component Level

Integrated Gas
Systems

Component Level

Design and
REDA Testing
TOPIC 2A _J
Component Level Component Level
R&D B Design and
Testing
TOPIC 2B Crosscutting . _ .
Capabilities L UL R Support testing Support testing
oens ab el = e Support testing Support testing Support testing

Capabilities
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Gen3 CSP Pathway Selection: Particles

PHASE 1 | PHASE 2 PHASE 3

o . Integrated Component Syste 2 O 21 2 O 2 3 -2 O 2 5
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= ol e,

and Testing g to One Path
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System simplicity for Receiver optimization
construction, operation, and Particle cost
reliabili :
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Gen3 Particle Pilot Plant (G3P3 Construction) 2023-2024

Existing NSTTF Heliostat Field

- Direct Falling Particle Receiver 1-2 MW,,; 775°C

* 6 MWh Thermal Energy Storage (Gravity Fed)

+ Diffusion Bonded Moving Packed Bed sCO, /
Particle Heat Exchanger 550 to 720 °C

+ 1MW, 700°C sCO,

» Continuous Particle Elevator

Photo Credits to Sandia National Laboratories,
Jeremy Sment, Margaret Gordon, and Ken Armijo
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G3P3 sCO, loop
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Alvarez, Francisco. Integration of Supercritical Carbon Dioxide Cooling Loop for
G3P3 Primary Heat Exchanger. United States: 2022.

In 2023 the DOE’s Office of Clean Energy Demonstrations Selected and began
negotiations with SNL to add a ~100kW turbine to the sCO, loop

U.S. DEPARTMENT OF ENERGY
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Integrated TESTBED Thermal Energy Storage & Brayton Cycle Equipment Demonstration

2021- Heliogen’s Capella Project Launches:
Particle + sCO, Demonstration

TESTBED

*  First-of-a-Kind sCO, facility integrated with TES;
heat input from solar field

* 5 MW, sCO, cycle at 600°C turbine inlet

* Heat input from > 10,000 heliostats, > 15 MW,

* Atleast 50 MWhy, Thermal Energy Storage

TESTING CAPABILITY

* Recompression Brayton Cycle (RCBC) operation

* RCBC control and integration with TES
e Turbomachinery durability and operation

* FOAKTES and heat exchanger
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SETO sCO, activities and opportunities

* December-February sCO, Request For Information

https://eere-exchange.energy.gov/Default.aspx#Foald69a8a2bc-43d6-4066-9165-df4595b8ccd6
(Or just search “SETO sCO2 RFI”)

 Small Business Innovation Research (SBIR) Topic Area
“Supercritical CO, Cycles”

 Open now Small Innovative Projects in Solar (SIPS)
Academic FOA. (Apps due March 6t)
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Apply for funding through the

SMALL INNOVATIVE PROJECTS IN SOLAR (SIPS) PROGRAM

Think outside the box. Nearly any solar energy technology idea is eligible. SIPS aims to improve:

(]

Funding up to $400,000

Produce
significant
results in
12-18
months

|\

Quickly
validate
novel
concepts

Concentrating

Photovoltaics
Solar-Thermal Power . Powerbiricraien
Thermal energy storage "" efficiency

Solar-thermal industrial * Field performance
processes * Service lifetime
Solar-thermal fuels e Manufacturability
Solar collectors (e.g. * Reuse and recycling

heliostats)
Turbomachinery

Funding up to $250,000

Lay the
foundation for
Learn more:

later-stage
research and
development




Concentrating Solar Flux to Heat and Power

. . EERE plans to issue the FOA in or about March 2024 via the EERE eXCHANGE website
N Otlce Of I nte nt Pu bl ISh ed 2/26/24 https://eere-eXCHANGE.energy.gov/.

Topic Area 1: Scalable Concentrating Solar Collectors seeks advanced
collector concepts that can enable a low cost and reliable integrated

. collector field. SETO is interested in innovations to decrease the installed @ CommercialScale
costs of solar collectors to S50 per square meter with high reliability and

b |
- efficiency over a 30-year lifetime. Heliostat systems, line-focusing collectors,
III * Purpose-built pilot test facility accommodating

and other novel collector forms are of interest. TIER 3 I realistic solar thermal fluld conditions in an
SR A I "\ integrated system
i i + Megawatt-scale testing
Topic Area 2: Scalable Supercritical Carbon Dioxide (sCO,) Turbomachinery
i i = Scale up in fabrication and testing
seek§ proposals to mature the technolpgy readiness level (TRL? of viable B 2: ﬁ o e,
~  turbines and compressors for the specified power cycle. SETO is interested Develop, Design, De-Risk L= - validate and optimize desians of
. . compenents and subsystems
in proposals for RD&D to enable the deployment of sCO, turbomachinery
~ for advanced CSP systems. Multiple heat engine and heat pump cycles are
of interest to enable cost effective CST plants coupled with thermal energy

storage.

« |dentification of promising design
space within innovative concepts
+ Conclusion driven research

Topic Area 3: Scalable Concentrating Solar-thermal Receivers and Reactors  » SOLAR Tier 1: up to S3 million federal funds
seeks innovative receiver or reactor concepts that could enable new CST

systems, as well as the development of receivers to improve existing CSP . o
systems. SETO is interested in proposals for novel solar receivers, solar > SOLAR Tier 2: up to $5 million federal funds

reactors, and improvements to existing solar receiver concepts. Successful

receiver or reactor technologies will support the deployment of CST systems . . .
that can benefit the U.S. market. » SOLAR Tier 3: up to $10 million federal funds

U.S. DEPARTMENT OF ENERGY  SOLAR ENERGY TECHNOLOGIES OFFICE 20
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_Learning from our Gen3 CSP Program execution

10 MW+ System
Demonstration

*« 1-10 MW
* Prove well understood models
at commercial relevant scale

TIER 2: - 100-1,000 kW

. . - Validation and Isolated Risk
Develop, Design, De-Risk Retirement

VAR 10-100 kW

® « Conclusion Driven
v Research

TIER 1.
Research, Discover, Analyze

The Gen3 CSP program succeeded in
focusing the research communities,
down selecting technologies, and
bringing the best out of competitive
R&D teams.

But it required a very rigid top-down
structure in pursuit of a singular
purpose.

SOLAR Tiers structure allows
technologies to organically advance
in scale.

CF Jp—
SO LA R T| ers **Scalable Outputs for Leveraging Advanced Research
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SETO Newsletter - Stay in Touch

 The SETO newsletter highlights the key activities, events, funding
opportunities, and publications that the solar program has funded.

SIGN UP NOW:

energy.gov/solar-newsletter |
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The Development of the sCO2 Po
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