

sCO2 Axial Expanders Development

International Panel Session

Baker Hughes

Axial Expanders for sCO2 Externally Heated Power Cycles

DeSOLination

- Started in 2021. Ongoing
- Prototype in 2025.
- **2.5 MW** (~2MW_e).
- 550°C-200 bar at inlet.
- 93 bar at exhaust.
- Mixture CO₂- SO₂.
- 17000 rpm, 5 stages.
- Transcritical cycle (CSP).

- Started 2018. Completed
- No prototype built.
- ~40 MW (25 MW_e).
- 620°C-245 bar at inlet.
- 81 bar at exhaust.
- Pure CO₂.
- 9000 rpm, 5 stages.
- Supercritical cycle (coal fueled).

- BH joined in 2020. Completed
- No prototype built.
- ~**130 MW** (100 MW_e).
- 700°C-240 bar at inlet.
- 81 bar at exhaust.
- Mixture CO₂- SO₂.
- 3000 rpm, 14 stages.
- Transcritical cycle (CSP).

Desolination Project Consortium

Consortium of 21 partners

- 13 Universities
- 2 Research centre
- 2 Large Industries
- 4 SME

Duration: 64 months

Start Date: 01 Jun 2021

Estimated Project Cost: M€13.8

Requested EU Contribution: M€10

The projects sCO2Flex, sCO2OLHEAT, CO2OLHEAT and DESOLINATION have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements N° 764690, No 952953, 101022831 and 101022686

Plant Concept

CSP plant

- Central tower receiver (max T=565°C)
- Direct storage with solar salts

Power cycle

- Transcritical cycle
- CO₂+SO₂ as working fluid

Forward Osmosis plant

- PAGB2000 as working fluid
- Regeneration Temp. = 75 °C

Transcritical Condensing (Rankine) Cycle

- Transcritical cycles attractive to reduce the compression work and enable high ambient temperature application (CO₂ critical Temp. 31°C)
- 82% CO2-18% SO2 (molar basis) Mixture selected resulting in a critical temperature higher than pure CO₂ (60-65°C)

Source: M.T. White, G. Bianchi, L. Chai et al., Review of supercritical CO2 technologies and systems for power generation, Applied Thermal Engineering (2023)

Demonstrator Plant Overview

- Demonstrate the optimized coupling of an existing CSP plant at King Saud University and of an innovative supercritical CO₂ power cycle with an advanced desalination system.
- Containerized plant design exception made for the molten salt heater => Limited foundation work required
- 3000 hours test planned
- Desalination plant commissioning Q1 2025
- Power Cycle commissioning Q4 2025

Desolination main design features

- 200 bar and 550°C at inlet
- 135 kg/m₃ inlet density
- 93 bar at exhaust
- 17000 rpm, 5 stages
- Rotor hub diameter: 130 mm
- Rotor bearing span: ~ Im
- Rotating blades integral with rotor
- External casing **barrel** type.

Integral rotor design

Expander Main Technology and Industrial development focus

Dry Gas Seal technology and cooling system: DGS required to minimize shaft end leakage. Existing DGS technology (limited at ~250°C) not compatible with expander conditions=> dedicated cooling system required.

Rotordynamics: high fluid density leads to strong destabilization effects

Performance: low volume flow, low cycle pressure ratio, EOS Modeling, <u>Standard Testing</u> <u>procedure development (ASME PTC Type)</u>

Materials compatibility: nickel-based alloy (Inco type) required to resist carburization above a certain temperature. CO2+ SO2 requires specific Inconel type. Long term effect characterization is required

Manufacturability: required alloys manufacturing process not consolidated for the expander commercial scale size. Optimizing manufacturing process as a function of size

Dry Gas Seals

PURE CO₂

- DGS are **essential** to avoid unaffordable quantities of CO₂ released into the atmosphere: gain with respect to labyrinths is some orders of magnitude!
- DGS technology is currently available for low temperatures (~250°C): a dedicated cooling system is necessary. Tradeoff between cooling effectiveness and thermal stresses minimization in hot components is a tricky task.
- Primary vent management

BLENDED CO₂

• Even a minimal release of process mixture into the atmosphere is to be avoided (owing to the nature of all the possible dopants): necessary a **buffer** with **pure CO₂**. To minimize the buffer flow entering the loop (and diluting the mixture), a peculiar (more complex) DGS arrangement is necessary.

Dry Gas Seals Validation

- sCO2-Flex DGS tested at Flowserve: housing equipped with heating rods to simulate heat flux external to the DGS.
- Developed a segregated conjugated heat transfer model with University of Florence: 1D fluid solver is calibrated with CFD results.
- Further component validation planned on Desolination program
- Demonstrator plant test will be crucial to observe DGS behavior in all operating conditions

FIGURE 7: Gap sensitivity on (a) DGS IB and (b) DGS Tester at OP3.1 (baseline) (© 2023 Baker Hughes Company - All rights reserved)

Picture 2: Tester set-up for hot sCO2

Performance – Low volume flow

- Initial **Desolination** cycle conditions established an inlet volume flow of ~ 0.08 m^3/s that was judged not feasible for axial turbine technology
- Cycle adapted (increased mass flow) to increase volume flow up to ~ 0.2 m^3/s still leading to 15 mm first nozzle airfoil height and 130 mm rotor hub diameter (rotor weight ~80 kg)
- Detailed understanding of secondary losses (aspect ratio and leakage) is critical to scale the results to production units size

Inlet Pressure losses sensitivity

Available Energy:

sCO2 Cycle = ~ 150 - 200 KJ/kg Steam Cycle = ~ 1200 - 1400 KJ/kg

Materials Characterization and Manufacturing Industrialization

Materials Selection and Characterization

- Carburization limits application of 12Cr Steel at 400°-500°C
- Nichel-Chromium based alloy required (bulk or surface protection)
- CO2-SO2 mixture poses further constraints on material selection
- Environment effect on critical material properties (LCF, FCG) under assessment

Manufcaturing Process Industrialization

- Nichel based alloys large forging and large casting (commercial scale) size goes beyong existing qualified process
- Procurement of qualification trials started (5 tons shaft forging)
- Main components manufacturing process optimization as a function of size (rotor, external casings, blades, valves)

Conclusions

- **EU and DOE projects** have set the foundations of sCO2 technology now the industry has to continue the development
- Turbomachinery components risks are reduced with detailed analysis and specific experiments but system level and cycle operability validation requires demonstrator plants experience
- Raw materials and components manufacturing process industrial development crucial for cost and lead time optimization
- Some development of International standard (PTC Code, ASTM material listing) could contribute to build a common ground for the industry