MAN Energy Solutions Future in the making

Heat up Carbon down

Heat pumps as CO₂ neutral solutions

Kevin Kisor Applications Engineering Manager MAN Energy Solutions USA Inc. 27 Feb 2024

Industries requiring heat...

Steam Production

Focus: Paper, (petro)chemical, CCS

Process Heat

Focus: (Petro)chemical, CCS, other

High and very high temperature segment

District Energy

Low temperature segment

Heating & Cooling

- Urban Areas
- Corporate Campus
- Large Multifamily

Decarbonization of heat – Heat pumps play increasingly important role

Total Final Energy Consumption, by Final Energy Use, 2017¹

Scenario for a 100% renewable heat supply:²

Heat supply shifts from 85% fossil fuels domination towards 100% renewable energy supply in 2050

12 %

26%

100%

Heat pumps

Bio heat

Gas heat

Oil heat

Coal heat

44 %

Electric heating

Solar thermal heat

Geothermal heat

- Electrification, esp. with heat pumps, plays a significant role in this
- Renewable and synthetic gases as alternative, especially for high

¹Source: REN21, Renewables 2020, global status report based on OECD/IEA data; ²LUT University, Energy Watch Group, Scenario of 100% renewable energy system in Europe in 2050

Heat Pump Concept

How Heat Pumps Decarbonize

Solution for zero emission heat

Coeffcient of Performance (COP)

Key question when measuring heat pump performance:

How much electricity (preferably from renewable energy sources) is needed to achieve the desired level of heating or cooling?

 $COP = \frac{heat \ output}{power \ input}$

The COP is the ratio of the useful heating output of a heat pump to the compressor's electric power expenditure.

District Heating Example

Coupling Heat Pumps with Energy Storage

Summary

- Global energy demand for heating and cooling presently accounts for over 50% of total energy consumption and contributes to 40% of CO_2 emissions.
- Heat pumps present a compelling solution for lowering heating costs and CO₂ emissions in utilities and process industries, especially when driven by renewable electricity.
- Heat pumps use a waste heat source or an ambient heat source to generate heat or to produce steam.
- A COP (coefficient of performance) of 4 means 1 kWh of electric energy will be converted to 4 kWh of heat.
- Especially when coupled with energy storage systems, heat pumps contribute to greater flexibility and efficiency in an overall energy management system.

Thank You for your interest!

Keynote #5 at 8:10 AM tomorrow morning will include a progress update on an industrial heat pump installation in Norway.

Why Heat Pumps

Global Energy Demand

Global Energy Consumption: Total 165,319 TWh (2021)

- Heat & Cooling is 50% of global energy consumption
- Heat contributes 40% of global carbon dioxide (CO2) emissions.

Global Heat Consumption: 82,659 TWh (2021)

- 50% of total heat produced was used for industrial processes
- 46% was consumed in buildings for space and water heating and, to a lesser extent, for cooking
- Fossil fuels continue to dominate heat supplies
 - Modern renewables (i.e. excluding the traditional use of biomass) met only 10% of global heat demand.

Decarbonisation of thermal energy segment is critical to reduce global CO2 emissions

Source: IEA - World Energy Outlook (2022) and Statista (2022)

What is a Heat Pump?

Functional Principal

Heat Pumps 101

Concept of Heat Energy

Heat Sources

Refrigerants

Different types of heat transfer fluids can be used under considerations of:

- Environmental aspects
- Global Warming Potential (GDP)
- Zero Ozone Depletion Potential (ODP)
- Safety Concepts

Refrigerant	Synthetic or Natural?	Commonly Used	ODP	GWP	Flammability	Toxicity
CFC	Synthetic	Commonly recognized as Freon (R11, R12, R113, R114, R115, R502)	.05 to 1	10,000+	Low	Low
HCFC	Synthetic	R22, R123, R401a	.02 to .1	1,000 to 5,000	Low, but higher than CFCs	Low
HFC	Synthetic	R134a, R404a, R407C, R410a	0	<1 to 12,500	None	Low
HFO	Synthetic	R1234yf, R1234ze(E), R1234ze(Z)	0	<1	Low	Low
Ammonia (NH ₃)	Natural	R717	0	0	Low	High
Carbon Dioxide (CO ₂)	Natural	R744	0	1	None	Low
нс	Natural	R290, R600a, R170, R1150, R600, R601	0	<1	High	Low