

© 2023 GE Vernova and/or its affiliates. All rights reserved.

GE Vernova Portfolio of Businesses: **ONE-OF-A-KIND**

© 2023 GE Vernova and/or its affiliates. All rights reserved.

GE VERNOVA

Advanced Research at a GLANCE

TALENT

2767

Global Researchers

LOCATIONS

Niskayuna, NY

Bangalore, India

TECH CAPABILITIES

Aero & Thermosciences

AI, Robotics & Software

Controls & Optimization

Electrical & Power Systems

Embedded Systems & Cybersecurity

Material Chemistry & Physics

Materials, Coatings & Modeling

Mechanical Systems & Design

sCO2 ... Research to Reality

8th International sCO2 Symposium

Jason Mortzheim sCO2 Platform Leader

Senior Manager – External Technology Partnerships

sCO2 Power Cycle Active Opportunities

	Technology	Current Programs persent-3 yrs	TRL	Where are the GAP 3-5+ yrs	GE pursuit / Interest Level
Gen	Oxy-Fuel	□ TBD	 Expander Heat source Compressor Heat Exchangers 	 Scale-up Expander inlet temperature Limited retrofit capability 	 Evaluating indirect fired application for CHP Not to be confused with Allam cycle
Fossi	Waste Heat Recovery	 ✓ DoE FE Bearings (\$4.8M) ✓ DoE FE STEP (\$12M \$140M) 	 Expander Heat source Compressor Heat Exchangers 	 Efficiency Challenge vs Recip Engines Variety of Markets limits standardization 	 Aeroderivative WHR active pursuit Evaluating high response CC applications System Optimization
REN Gen	Concentrated Solar Power	 ✓ DOE SETO ✓ Bearings (\$4.0M) ✓ Cycles (\$1.0M) ✓ Near Net Shape HIP (\$2M) 	 Expander Heat source Compressor Heat Exchangers 	 GE content low fraction of CAPEX Overall CSP system needs to meet LCoE targets Requires TES 	 Evaluating system optimization with energy storage and solar Advancing technology to improve economics
Nuclear	Nuclear	 ✓ DoE Nuclear (ARC) ✓ Internal investment 	 Expander Heat source Compressor Heat Exchangers 	 Paced by advanced reactor timeline sCO2 power block scale-up 	 Several pursuits with Gen IV reactors: Sodium fast reactor High temperature gas reactors
S Ш Н	Thermal Ener	gy Storage	ExpanderCompressor	 Commercial Readiness 	 Active pursuit in mid temperature application

Commercial Interest is Growing at an Expanding Rate

Gaps to Close

Economics:

- Low temperature applications (<500C):
 - Efficiency vs steam is challenging •
 - Cost comparable, need nth of a kind
 - Focus on unique applications
- High temperature applications (>600C):
 - Cost of materials/manufacturing prohibitive
 - Efficiency increase does not offset cost •

10MWe STEP facility

LM6000 Gas Turbine

Availability/Reliability:

- Steam: •
 - 125 yr old technology
 - Limited technology enhancements
- sCO2:
 - Current operation: 40-50hrs
 - Need >1000hrs to demonstrate reliability
 - Large potential for technology advancement

Most customers still compare sCO2 to steam

Notable Achievements

24" advanced seal test Allows scalability to >500MWe

Enhanced compressor operating data

Increased predictability

Advanced manufacturing modality for turbine case – 50% cost reduction

System Thermal Model Turbomachinery inputs critical for seal design

GE Vernova continuing to advance sCO2 technology

sCO2 Features and Use Cases - WHR

Features of sCO2 Turbine

- Fast Start <30 minutes cold start
- Turbine designed for > 10,000 start cycles
- Minimal maintenance
- Designed for temperatures up to 700°C
- Small footprint, skid factory assembled

Features of sCO2 Cycle

- Unattended boiler
- 2. No water required
- 3. Add renewable or stored thermal energy
- 4. Recuperators added to optimal efficiency vs cost

Potential Use Cases

- - Combined cycle efficiency \rightarrow unattended boiler
- Combined cycle efficiency \rightarrow without water
- - High efficiency peaking power with fast start
 - Integrated with renewable heat source or stored thermal energy

Provides stable synchronous generation

GEVERNOVA ADVANCED RESEARCH Jason Mortzheim

2/27/2024

