CITZCH

CIBAS

Product and Design

Contents:

- CiTECH Introduction
- Heater Design
- WHRU Design Considerations
- CITECH Scope & Expertise
- WHRU AOB
- Contact Information

Prepared for:

29th February 2024

Mr. Aramis Cook – Senior Process Design Engineer

CiTECH

CiTECH

Note: Support Steelwork for the Traditional WHRU image has been omitted for clarity

- Higher Heat Transfer Coefficient due to turbulent flow within the helical coil*
- Coils manufactured from 12m finned seamless pipe
- Each coil is heat treated to stress relieve
- Inherently rigid design less prone to vibration
- Preheater coil P91
- Design Temp: 400°C, 750°F
- Design Pressure: 270 barg, 3,900 psig
- Main heater coil P91
- Design Temp: 400°C, 750°F
- Design Pressure: 270 barg, 3,900 psig

Materials of choice:

CiTECH

- Due to the high temperature and pressure of the systems, high grade materials are required.
- For temperatures above 400°C, Stainless Steel (347H) or Inconel is required subject to design pressure.
- For temperatures below 400°C, P91 is suitable.

Transient Conditions:

- Can sCO2 flow be maintained when the gas turbine is operating?
- Will the sCO2 be subject to a phase change during start-up?
- Pint, B., Keiser, J. and Brese, R. (2016). THE EFFECT OF TEMPERATURE AND PRESSURE ON SUPERCRITICAL CO2 COMPATIBILITY OF CONVENTIONAL STRUCTURAL ALLOYS. [online] Available at: https://sco2symposium.com/papers2016/Materials/056paper.pdf [Accessed 23 Feb. 2024].

Site Ambient Temperature

	High Temperature	Low Temperature				
•	Greater water content in Exhaust gas (better heat transfer)	•	Lower insulation requirements			
•	Higher exhaust gas temperature at outlet	•	Higher exhaust flow rate (more available for heat transfer)			
•	Lower Exhaust flow rate (better exhaust pressure drop)	•	Lower exhaust temperature, possible material savings			

Allowable sCO2 Pressure Drop

	High Process Pressure Drop		Low Process Pressure Drop
•	Less tube passes required	•	Lower capital cost for pump or compressor.
•	Reduced outer dimension of the casings		
•	Smaller tubes can be used allowing for an increased surface area to volume		

Allowable Exhaust Pressure Drop

	High Exhaust Pressure Drop		Low Exhaust Pressure Drop
•	Increased pressure drop allows smaller tube spacing and more rows	•	Typically has an increased efficiency for the GT
•	Increased heat transfer due to higher velocity (closer tubes)		
•	Casing dimensions can be reduced		
•	Reduced overall tube length required		

Fuel for Operation

	Natural Gas	Diesel Fuel				
•	Low acid dew point (low sulphur content)	•	Increased fouling factors			
•	More relaxed fin dimensions	•	Readily available on platform start-up			
•	Not always available on platform start-up	•	Less efficient fin dimensions			
•	Lower fouling factors	•	Increased acid dew point			

Parallel Flow vs Counter Flow Coil Design

	Counter Flow Coil	Parallel Flow Coil					
•	Lower minimum tube wall / fin temperature	•	Lower heat transfer				
•	Higher maximum tube wall / fin temperature	•	Higher minimum tube wall / fin temperature				
•	Greater heat transfer	•	Lower maximum tube wall / fin temperature				
•	Greater approach temperature						

Design standards for Fins

API560	ISO21905	Citech
 Gas fin dimensions: 1.3 mm thickness (min) 25.4 mm fin height (max) 197 fins per metre (max) 	 Gas fin dimensions: 1.25 mm thickness (min) 25 mm fin height (max) 236 fins per metre (max) 	 Gas fin dimensions: 1 mm thickness (min) 25.4 mm fin height (max) 236 fins per metre (max)
 Oil fin dimensions: 2.5 mm thickness (min) 19.1 mm fin height (max) 118 fins per metre (max) 	 Oil fin dimensions: 1.5 mm thickness (min) 16 mm fin height (max) 157 fins per metre (max) 	 Oil fin dimensions: 1.5 mm thickness (min) 16 mm fin height (max) 160 fins per metre (max)

GT operating load for design

- A higher load is beneficial for a leaner WHRU
- Load case should be based on worst case scenario to allow end user to recover duty

Humidity

- The greater the water content of the exhaust gas the greater the heat transfer
- Acid dew point is subject to the water content of the Exhaust gas.

Run dry Requirements

• Carbon steel fins if always flooded, for better heat transfer. (subject to maximum fin temperature)

Duty required

- Is the energy content of the exhaust sufficient?
- Will the approach temperature allow for a lean design?

Approach Temperature

- The approach temperature is defined as the difference in temperature between the exhaust temperature outlet and the HM temperature that meets the outlet of the exhaust.
- Parallel flow is the outlet HM temperature.
- Counter flow is the inlet HM temperature.

CiteCh

Case No.	Total Duty Recovered, MW	Pressure Drop Utilised (Main Heater), bar	Pressure Drop Utilised (Pre Heater), bar	Approach Temperature (Main Heater), °C	Approach Temperature (Pre Heater), °C	Flange to Flange Unit Weight, Tonnes	Flange to Flange Unit Height, m	Unit Diameter, m
1	21.5	1.5 2.2 1.3		31.3	31.3	143.5	17.2	5.9
2	2 26.3 2.6 2.0		13.9	15.5	287.8	21.9	6.0	
3	26.5	2.4	1.8	9.4	16.2	341.1	23.5	6.4
4	4 26.2 2.4 1.8		1.8	18.5	11.3	282.5	21.2	6.0
5	27.2 3.3 1.7		1.7	2.0	11.2	495.1	29.1	6.6
6	24.8	2.2	1.7	15.9	14.0	266.3	20.8	6.0
7	23.6	2.2	1.4	19.4	16.7	237.8	19.4	6.0
2.1 (Adjusted)	23.3	1.9	2.0	25.0	25.0	197.8	17.8	6.0
2.2 (Adjusted)	22.1	2.2	1.9	31.3	31.3	163.0	16.8	5.7

CiTECH

Case No.	Total Duty Recovered, MW	Main Heater Flow, kg/s	Pre Heater Flow, kg/s	Main Heater Outlet Temperature, °C	Pre Heater Outlet Temperature, °C	Pressure Drop Utilised (Main Heater), bar	Pressure Drop Utilised (Pre Heater), bar	Unit Weight, Tonnes	Unit Height, m	Unit Diameter, m
Case 7	23.6	95.0	30.4	365.2	254.3	2.0	1.5	175	18	6.0
Case 7.1 (Adjusted)	23.6	97.9	34.0	340.0	230.0	3.4	3.1	110	15	5.3
Case 7.2 (Adjusted)	23.6	96.0	30.5	365.2	254.3	3.4	2.5	150	17	5.6

Thank you Any questions?

CITZCH

CiTECH Key Contacts

CiTECH UK – Senior Process Design Engineer Mr. Aramis Cook Tel: +44 1482 755632 E-mail: <u>aramis.cook@citech.co.uk</u>

Salisbury House, Saxon Way, Priory Park West, Hessle. HU13 9PB United Kingdom

CiTECH UK – Sales Manager

Mr. Adrian Wilson Mobile: +44 7494 539038 E-mail: <u>adrian.wilson@citech.co.uk</u>

Salisbury House, Saxon Way, Priory Park West, Hessle. HU13 9PB United Kingdom CiTECH Malaysia – General Manager

Mr. Pang Sheh Haur Mobile: +6 (016) 336 0423 E-mail: <u>shpang@citech-malaysia.com</u>

Lot 586 & 579, 2nd Mile, Jalan Batu Tiga Lama, 41300 Klang Selangor Malaysia

CITECH UK – Managing Director

Mr. Ashleigh Ogden Mobile: +44 7764 208705 E-mail: <u>ashleigh.ogden@citech.co.uk</u>

Salisbury House, Saxon Way, Priory Park West, Hessle. HU13 9PB United Kingdom

