

Experimental Demonstration of a Coal Fired Primary Heat Exchanger in a sCO₂-based Power Cycle

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Authors

Echogen Power Systems

Dr. Timothy Held Chief Technology Officer

Jason Miller **Director of Engineering**

Kyle P. Sedlacko Sr. Mechanical Systems Engineer

> Brett Bowan E, I and C Manager

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

ALL RIGHTS RESERVED

SUPERCRITICAL STORAGE COMPANY, INC

Dr. Andrew Fry Associate Professor, Chemical Engineering

Brigham Young University

Brian Schooff PhD Candidate

Rajarshi Roy PhD Candidate

DRIVING TO BASELOAD RENEWABLES

Reaction Engineering International

Andrew Chiodo Program Manager

Babcock Power

Michael D. Johnson Sr. Engineer

Project Team and Discussion Agenda

Project Team

- Brigham Young University
- **Reaction Engineering International**
- Riley Power, Inc (Babcock Power)
- Echogen Power Systems
- Linde
- San Rafael Energy Research Center (SRERC)

Agenda

- SRERC Test Facility
- L1500 Furnace
- Furnace Modeling
- Primary Heat Exchanger Design
- Testing Campaigns
- Conclusions
- Acknowledgments

ECHOGEN power systems

10

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

SRERC Test Facility

Facility Research Focus:

- Nuclear Reactor & Fuel Processing
- Power Cycle Technologies
- Solar Thermal Energy Systems
- Manufacturing

Facility Upgrades

- Electrical
- Piping
- Cooling System
- Auxiliary systems
 - CO₂ inventory system
 - Safety system and equipment
- Foundations and Facilities

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Fig4: Satellite View of San Rafael Energy Research Center Facility with L1500 Furnace.

Fig5: Echogen Power Systems Thermal Management Fig6: Linde CO₂ Storage Tank Installed at System Installed at SRERC. SRERC.

L1500 Furnace

- 3-zone configuration: radiative, transition and lacksquareconvective sections.
- Refractory lined

ECHOGEN

power systems

- Dual-register, dual-swirl low-NOx burner
- Equipped with primary, inner secondary and outer secondary air injection.

Burner

configuration, radiative, transition and convective.

1500kW_{th} pilot-scale entrained flow combustor

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Fig2: L1500 Furnace Burner w/Inlet Fuel Manifold

L1500 Furnace Cont.

- Water-cooled, cross-flow heat exchanger in convective section (shown in foreground).
- A baghouse captures particulate entrained in \bullet process air.
- Gravimetric feed system with auger screw
- Fuels for this program consist of natural gas and western US bituminous coal.

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Fig3: L1500 Furnace. Convective Section (in foreground) with Exhaust Piping and Cooling Manifold.

Impact of Firing Rate

- Increasing the firing rate from 0.879MW to 1.76MW (Param2) was effective in enhancing heat transfer.
- A simultaneous increase in excess air played a crucial role in decreasing peak heat flux.

Total PHX Duty

Maximum Inc. Heat Flux to PHX

Table1: CFD Results, Baseline and Param2 Cases

Units	Baseline	Param2
MW	0.632	1.143
W/m2	218,000	196,000

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Fig7: CFD Heat Flux Comparison, Baseline and Param2 Cases

Fig8: CFD Gas Temperature Comparison, Baseline and Param2 Cases

Impact of Extended HX Surface

- Extending the heat exchanger by 2ft decreased peak heat fluxes by nearly 6%, as demonstrated in Param6 compared to Param2.
- Param6 was the selected lacksquareinstallation option.

Total PHX Duty

Maximum Inc. Heat Flux to PHX

Table2: CFD Results, Param2 and Param6 Cases

Units	Param2	Param6
MW	1.143	1.135
W/m2	196,000	185,000

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Impact of Burner Swirl

Higher peak temperatures observed

Impact of Staging Air

- Higher peak temperature
- Increased incident flux

Impact of Bluff Body

Swirl reduction produced a narrower flame sheet near burner Rapid gas mixing yielded substoichiometric combustion and higher fluxes in some cases

Staging air elongates the flame, reducing front-end heat flux Downstream mixing issues observed producing substoichiometric combustion

Addition of the bluff body enhanced mixing while extending heat release Observed unfavorable peak heat flux due to intensified mixing

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Impact of Natural Gas Flame Running on 100% natural gas lacksquare

- Increased heat fluxes at the lacksquarenear-burner end of the radiant section.
- Produced a substantial increase in peak tube metal temperatures (from 1100°F to $1400^{\circ}F$
- Generated a 10% rise in predicted heat transfer to the PHX.

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Fig10: PHX Total Heat Transfer Comparison Between Coal and Natural Gas

DRIVING TO BASELOAD RENEWABLES

100% Nat. Gas

Design Conditions:

	Units	(USC)	Units	s (SI)
CO ₂ Inlet Temperature	°F	779	°C	415
CO ₂ Outlet Temperature	°F	1112	°C	600
CO ₂ Flow Rate	lb/hr	43640	kg/s	5.5
CO ₂ Operating pressure Max Allowable Working	PSIA	2955	MPa	20.37
Pressure	PSIA	3975	MPa	27.41
 Tangent wall desig 	n per	ASME	Sect.I	
Material selection	Super	304H		
 Limited surface area due to retrofit 				
application.				
Sensible heat transfer presented design				
challenges				
 Managing heat flux 	x is cri	tical fo	or mai	ntainir
PHX integrity.				
ECHOGEN S power systems	UPERCRI LL RIGHTS F	FICAL STO	RAGE CON	MPANY, IN

- g

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Fig11: Primary Heat Exchanger (PHX) Installation

- Embedded heat flux sensors aid in verifying thermal modeling
 - 6 Locations
 - Qty: 2, Near-wall
 - Qty: 2, Mid-wall
- Flow balancing valves are used to manage flow distribution and maintain desire flux levels.
- Skin thermocouples monitor tube metal temperatures.

ECHOGEN

power systems

Fig14: (Right) Flow Balancing Valve Installation with Outlet Header.

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

. . .

DRIVING TO BASELOAD RENEWABLES

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

12

- Heat transfer model aligns well with test data for the radiant module but significantly differs in the convective section due to observed fouling.
- Thermal resistance assumptions impacted sCO₂ exit temperature predictions.
- PHX efficiency = 60-65% (meets predictions).
- Peak heat input of 1.63MW from fuel.
- Adjusting sCO₂ flow rate demonstrated the capability to achieve full design conditions.

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

DRIVING TO BASELOAD RENEWABLES

Overall Heat Transfer to PHX

Measured total PHX pressure drop: • dP = 4.7bar (68psi) Model predicted total PHX pressure drop: dP = 3.6bar (52psi)Incorporating valve and pressure drop, dP = 4.2

PHX Pressure L

ECHOGEN

power systems

Measured Total SUPERCRITICAL STORAGE COMPANY, INC

ALL RIGHTS RESERVED

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

i) d piping lo bar (61ps	osses yields a i, 89%)	tota
Loss Compa	rison	

Temperature distribution in the radiant panels aligned well with predictions.

Sensor Position	CO ₂ Temps at Convective Outlet °C	CO ₂ Temps at Radiant Outlet (unbalanced) °C	CO ₂ Temps at Radiant Outlet (adjusted) °C
1	371	552	563
2	370	544	556
3	366	553	565
4	368	547	556
5	367	557	567
6	364	550	555
7	354	551	564
8		556	554
9		61*	59*
10		548	555
11		554	561
12		560	567
13		562	584
14		583	564
15		563	583
16		590	583

Table3: PHX Tube Temperature Distribution Comparison Between Unbalanced and Adjusted Flow Balancing Valves

power systems

SUPERCRITICAL STORAGE COMPANY, INC

ALL RIGHTS RESERVED

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Testing

Campaign 2 Achievements Additional +70Hrs continuous operation. • Avg. 1MW of heat input to PHX.

Fig22: Flow Distribution During Campaign 2 Endurance Testing

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

100

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Conclusions

- Increased heat rate of 1.76MW.
- Peak heat flux maintained below 175,000 W/m2.
- Near-burner crossmember arrangement reduces peak heat flux.
- Increased excess air mitigates adiabatic flame temperature.
- Measured data aligns well with model predictions.
- Pressure losses aligned with predictions, and flow distribution improved by adjusting balancing valves.
- Flux sensor readings require further review for accuracy.
- Ongoing testing goals:
 - Obtain/full design conditions. Investigate material integrity to reduce risks associated with design and manufacturing.

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Acknowledgments

Disclaimer

This material is based upon work supported by the Department of Energy under Award Number DE-FE0031928. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CRediT Authorship Statement

Kyle P. Sedlacko: Investigation, Formal analysis, Writing - Review & Editing. Jason Miller: Project administration, Funding acquisition, supervision. **Brett Bowan:** Investigation, Writing. Timothy Held: Conceptualization, Funding acquisition, Project administration Andrew Fry: Conceptualization, Resources, Supervision, Funding acquisition, Investigation. Brian Schooff: Investigation, Formal analysis, Writing - Review & Editing. Rajarshi Roy: Investigation, Formal analysis, Writing - Review & Editing. Michael D. Johnson: Methodology, Formal analysis, Investigation, Writing. Andrew P. Chiodo: Investigation, Software, Validation, Formal analysis, Writing – Review & Editing, Visualization

ECHOGEN power systems

SUPERCRITICAL STORAGE COMPANY, INC **ALL RIGHTS RESERVED**

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

DRIVING TO BASELOAD RENEWABLES

18

