

High-Temperature Creep and Creep-Fatigue Performance of Stainless Steel 316 Diffusion Bonds Paper #63

John Shingledecker, Ph.D., Energy Supply & Low-Carbon Resources Electric Power Research Institute (EPRI)

Vikash Kumar¹, Andrea Bollinger¹, Bonnie Antoun², Dereje Amogne³, Kevin Albrecht³, Matthew Sandlin² ¹EPRI, ²Sandia National Laboratories, ³VPE Thermal, LLC

8th Int. Supercritical CO2 Power Cycles Symposium February 27-29, 2024; San Antonio, TX USA

 in
 X
 f

 www.epri.com
 © 2024 Electric Power Research Institute, Inc. All rights reserved.

Acknowledgements

This work was funded by the U.S. Department of Energy's Solar Energy Technology Office (National Lab Funding for Fiscal Years 2022, 2023, and 2024). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

VACUUM PROCESS ENGINEERING

Why Diffusion Bonded Compact Heat-Exchangers (CHX)?

- Compact Heat Exchangers (CHX) are more efficient and have the potential to reduce size in many applications compared traditional heat exchangers.
- Typical Diffusion Bonding process
 - Channels are chemically etched into thin sheets / plates
 - Plates are stacked on top of each other
 - Plates are loaded under uniaxial pressure at high temperatures and bonded together to form single block

> Opportunity Space for DB-CHX
 > Increasing design temp. & pressure → minimize volume of expensive alloys
 > Weight and/or space savings

Opportunities for Compact Heat Exchangers (CHX)

Concentrating Solar Power (CSP)

- Particle to sCO₂
- Bulk energy storage

Advanced Power Cycles

- sCO₂ Brayton Cycle
- Direct & in-direct cycles

Nuclear

 Very-high-temperature (VHT) gas-cooled reactor

EPRI

 Electric & non-electric applications

High-temperatures provide multiple applications for CHXs

Lifetime Modeling Diffusion Bonds (DB) at High Temperature

ASME DB:

- Manufacturing acceptance ASME Section IX QW-185, 'diffusion welding'
- Section VIII design allowables: 30% penalty on stress due to weld inspection requirements
 - no specified lifetime for time dependent regime
- Literature on DB performance in creep, fatigue, and 'creep-fatigue'
 - Few studies; generally show inferior performance for higher-alloyed materials (800H, 617, ...)

To estimate component lifetime, what should be assumed for hightemperature material properties?

Material & Testing

Dual listed 316/316L material: Commercial DB with today typical practice

EPG

Prior EPRI research

- Non-uniform failure (ovality) \rightarrow orientation markings
- Starting sheet microstructure \rightarrow testing of sheets
- Sample size effects \rightarrow minimum sample gauge diameter of 6.35mm

Shingledecker et. al. JMEP, 2022: <u>https://doi.org/10.1007/s11665-022-07785-2</u>

Shingledecker, et al. ASME GT2023-102967

Test plan informed by prior EPRI research

Characterization of the 316 diffusion bond

*procedure developed by DE-NE0009320

Automated OM image analysis*:

Gray = all grains

Yellow = grains near DB line (within $50\mu m$) and with

 $<10\mu m$ growth from DB line

Blue/Red = grains with >10 μ m growth from DB line

High-quality commercial bond showing significant grain migration across bond line with minimal remaining porosity

SEM Bond Line → grain orosity

EPRI

Tensile Behavior

- Duplicate tests up to 750°C
- Excellent repeatability and ductility

Similar tensile performance to wrought 316L

- Meets room temp. requirements for 316L wrought
- Elevated temperature strength slightly below ASME design curves (not statistical minimums) for wrought

Tensile – post-test

Failure appears along bond lines Ovality in fracture faces/samples indicative anisotropy in sheet

Creep behavior

- Sheets (same heat-treatment cycle as bonding cycle):
 - At high stress, creep performance is different parallel or perpendicular to rolling direction
 - Confirmation on source of anisotropy
- Sheets compared to diffusion bonded block
 - Rupture life of weaker orientation appears to control behavior
 - Bonded blocks have similar rupture life to sheets, but higher minimum creep rate

Rupture life between DB and sheets are similar; creep deformation behavior is more complicated

Creep-rupture performance

- ~76,000 hours of creep testing to date
- Conditions:
 - 600 to 750°C
 - Longest rupture: ~7,900hrs
 - Ongoing tests (2): >11,000hrs
 - Typical rupture elongation ~40%
- Additional EPRI research (2nd DB 316/316L block)
 - No notable differences between blocks

[9] Shingledecker, et al. ASME GT2023-102967

Intermediate to long-term creep testing show lives equivalent to wrought 316/316H

Grain Size

Coarser grain size + chemistry (C+N) likely leads to lower tensile strength but increased high-temperature creep performance for 316/316L within the 316/316H database at 600-650°C

Low Cycle Fatigue (LCF)

- LCF: 600°C
 - Similar behavior to wrought 316/316H database
 - Total strain ranges from ~0.6 to 1.6%
- LCF+Hold-Time:
 - 30 min (0.5hrs) tensile hold
 - Reduced cycle life by approximately 50%
 - Similar to observations at 550-650°C in literature

316 DB LCF and LCF+hold-times equivalent to wrought 316/316H

Creep damage (macroscopic)

Creep cavities form preferentially in region of diffusion bond leading to rupture, more pronounced at lower testing temperatures

EPC

Fatigue Damage (macroscopic)

- Surface initiated damage observed
- Multiple cracks grow along original diffusion bond interface
- Fracture appears flat

Little macroscopic difference in hold-time testing

Microscopic comparison between creep and fatigue

Fatigue crack grows transgranularly through pre-existing voids

Creep damage form on grain boundaries (intergranularly) near pre-existing voids

Subtle difference in creep and fatigue, what about hold-time fatigue?

25 µm

Creep, 600 °C

High-Temperature Damage

50 µm

LCF +30min tensile hold , 600 °C, $\Delta \epsilon$ =0.0148, N_f= 240

Testing	Initiation	Growth
_CF	Surface (multiple location)	Transgranular with preference for diffusion bond line and pre-existing voids
Creep	Grain boundaries	Intergranular (near original diffusion bond interface): wedge cracks, G.B. decohesion
-CF + Hold Γime	Surface (multiple locations, trans- or intergranular)	Intergranular (near original diffusion bond interface): cavities, G.B. decohesion, wedge crack

Macro + microscopic evaluation suggest LCF+Hold-Time results in time dependent ('creepfatigue') damage

void

Wedge

crack

50 µm

Role of pre-existing voids and creep

4.0

0.0

0

1

2

3

Total Features Measured:

Voids + Creep at DB Line

GripDBL1

GaugeDBL2

Average for multiple bonds

Creep Damage in Gauge at DB Line compared to intermediate regions between bonds

Detailed quantitative analysis confirms pre-existing DB voids not coincident with grain boundaries do not initiate new creep damage or grow appreciably during creep

5

Equivalent Diameter (microns)

4

6

DB Line Voids Only for Grip (no

creep) to Gauge (creep)

GripDBL1

GaugeDBL2

Average for multiple bonds

18

6

6

0+

2

3

Equivalent Diameter (microns)

Normalized Count of Features (#/mm)

Creep damage: why does failure occur near original DB interface?

7th Diffusion bond line from failure location after creep testing (arrows indicate applied stress)

© 2024 Electric Power Research Institute, Inc. All rights reserved.

Summary

- Significant first-of-a-kind test program was conducted on 316/316L diffusion bonded blocks to understand high-temperature material performance:
 - High-temperature tensile behavior was at the bottom of the scatterband but good ductility and repeatability was observed
 - Creep-rupture life was within the 316/316H scatterband with good creep ductility for times beyond 10,000 hrs likely due to material chemistry and grain size effects
 - Non-isotropic creep behavior (rupture ovality) is directly linked to creep performance in the sheets even after thermal treatment
 - A LCF cycles to failure (S-N) was established and is inline with expectations for 316/316H.
 - Initial creep-fatigue results show a 30 min hold-time reduce cycle life by approximately ½ which is consistent with published literature on wrought 316.
- Despite high strength and good ductility failure at high-temperature appeared macroscopically planar at diffusion bonding interfaces
 - Detailed metallurgical investigation shows that damage mechanism was influenced either directly or indirectly due to pre-existing voids from manufacturing depending on loading conditions

Data suggest for lifetime estimation and design using existing wrought databases for 316 is appropriate and a strength reduction factor is not needed

Next steps

- This test program:
 - Uniaxial loading
 - Bonded sheets
- Applications:
 - Multiaxial loading
 - Complex
 microchannel designs

MAHAJAN, HERAMB PRAKASH. NC State Thesis: Mechanical Characterization and Simulation Modeling of Printed Circuit Heat Exchangers for High Temperature Nuclear Application.

Feature testing is needed to understand fundamental diffusion bond creep performance to diffusion bonded component performance

Tuesday October 15th – Friday October 18th, 2024 Hyatt Regency Coconut Point | Bonita Springs, FL USA

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved