S-CO₂ radial turbine testing data and performance map for thermodynamic conditions with strong real gas effect

Seungkyu Lee (KAIST) Gihyeon Kim (KAIST) In Woo Son (KAERI) Jeong Ik Lee* (KAIST)

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Supercritical CO₂ Power Cycles Symposium

Contents

Introduction : Thermal properties of S-CO₂ and Radial turbine

The KAIST-TMD and Evaluation of real gas models similitude method

Experimental Facility : ABC test loop and AMB-TAC

Methodology of post-processing of measured data

Performance map of radial turbine

Future works and Summary

- properties of S-CO₂, such as the change in physical properties.

• In a typical power cycle, the behavior of a S-CO₂ turbine can be expected to be similar to an air-combustion turbine. • However, the efficiency of the turbine has a significant impact on the overall efficiency of the power cycle. • Therefore, when designing a turbine with a higher density of S-CO₂ as the working fluid, it is necessary to take into account the special • Therefore, the experimental performance of turbine near the critical point can be used as a database for the precision design of turbines.

Thermal properties of S-CO₂

Nomenclature	
Absolute Velocity	С
Blade Velocity	U
Relative Velocity	W
Meridional direction	m
Tangential direction	w
Volute Inlet	1
Nozzle Inlet	2
Rotor Inlet	3
Rotor Outlet	4

- radial inflow turbine.

• Radial inflow turbine is more suitable than axial turbine for power cycle with a small power output of 10 MW electric or less. • The working fluid passes through each part of the radial inflow turbine in the following order: volute, nozzle, and rotor in a

• Euler Work Equation : The difference between the velocities of the blades (U) multiplied by the tangential absolute velocity (C_w) of the fluid becomes the stagnation enthalpy (h_0) difference at the turbine inlet and outlet.

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Radial turbine

- recent experiments.

Radial turbine losses

• There are two kinds of losses in a radial turbine; Internal losses and External losses. Internal losses affect both pressure ratio and efficiency, while external losses affect only efficiency. • Loss models for S-CO₂ radial turbines have been validated in compressors, or are being developed and calibrated through

• It is noted that for a shrouded type rotor, there is a leakage flow that occurs between the shroud and stator. This loss is included in the external loss and does not affect the pressure ratio or pressure drop of the rotor performance.

Featured Model Proposer	Туре
Hiett and Johnson	
Wasserbauer and Glassman	Testorno 1
Moustapha	Internar
(Absent in shrouded turbine)	
Daily and Nece	T
Kim and Lee	External

Two methods for evaluate real gas effect

KAIST-MMR

S-CO₂ PRHRS for SMR

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Experimental data

The KAIST-TMD code and target systems

- of off-design condition.

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

KAIST-MMR

• The KAIST-TMD code is designed for the design and analysis of S-CO₂ turbomachinery. • It can design turbines and compressors to meet cycle requirements and predict behavior

• In this study, two turbines are designed for the KAIST Micro-Modular reactor and the passive residual heat removal system of small nuclear reactor.

S-CO₂ PRHRS for SMR

Nomenclature

Pressure

Temperature

Compressibility factor

Specific heat ratio

Specific enthalpy

Gas constant

Isentropic volume exponen

Entropy

Static property

Stagnation property

Critical property

Five real gas models

		-		Flow	Speed	Head	Pressure	Efficiency	
	Р					parameter	parameter	parameter	
	Т		IG	$\frac{\dot{m}\sqrt{\gamma RT}}{\gamma P}$	$\frac{N}{\sqrt{\gamma RT}}$	$\frac{\Delta H}{\gamma RT}$			
	Z				N	A 77			
	γ		IGZ	$\frac{\dot{m}\sqrt{\gamma ZRT}}{\gamma P}$	$\frac{1}{\sqrt{\gamma ZRT}}$	$\frac{\Delta H}{\gamma ZRT}$			
	n				N	A 11			
nt	R n.		Glassman	$\frac{m_{\sqrt{\gamma}RT_{cr}}}{\gamma P_{cr}}$	$\frac{1}{\sqrt{\gamma RT_{cr}}}$	$\frac{\Delta H}{\gamma RT_{cr}}$	PR	η	$T_{cr} = T$
••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			· / 7.07	N	^ <i>H</i>			
	s		BNI	$m_{\sqrt{\gamma}ZKI_{cr}}$	$\sqrt{\sqrt{2}}$	$\frac{\Delta m}{\sqrt{7RT}}$			$T_{cr} = T$
	S			γP{cr}	$\sqrt{\gamma L \Lambda I_{cr}}$	YZAI cr			
	0		Bham	$\dot{m}{\sqrt{n_s ZRT}}$	N	ΔH			
	_cr		Filam	$\frac{n_s P}{n_s P}$	$\sqrt{n_s ZRT}$	$\overline{n_s ZRT}$			
			nam	• Re	al gas m	odels co	nvert me	asured c	lata to
	n _s corre	ection		- - 1	C '				1

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

non-dimensional parameters. • There are five gas models, and previous studies have shown that the IGZ model performs best in compressors.

• Head parameter is more realistic for S-CO₂ turbomachinery similitude

method than Pressure ratio.

Similitude method

- 1. Design a turbine with highest efficiency.
- 2. Plot design and off-design performance map.
- 3. Convert input and output parameters to nondimensional parameters utilizing each real gas model.
- 4. Overlap the output parameters in one graph.
- 5. Compare the errors of five gas models for each RPM and mass flow rate.

KAIST-MMR

S-CO₂ PRHRS for SMR

Results of code evaluation

Pressure Ratio	IG	IGZ	Glass man	BNI	Pham	550°C, 200bar, Z:1.034	Head Parameter	IG	IGZ	Glass man	BNI	Pham	550°C, 200bar, Z:1.034
cond1	0.59	0.60	0.37	0.37	0.42	500°C, 200bar, Z:1.027	cond1	0.50	0.43	0.32	0.62	0.39	500°C, 200bar, Z:1.027
cond2	1.35	1.36	0.82	0.84	0.93	450°C, 200bar, Z:1.018	cond2	1.34	0.88	0.92	1.31	0.81	450°C, 200bar, Z:1.018
cond3	3.77	3.82	2.22	2.27	2.37	350°C, 200bar, Z:0.988	cond3	4.58	1.97	3.50	3.09	1.75	350°C, 200bar, Z:0.988
cond4	9.33	9.49	5.17	5.31	5.29	250°C, 200bar, Z:0.924	cond4	12.31	3.41	10.00	5.98	2.87	250°C, 200bar, Z:0.924
cond5	16.02	16.35	8.36	8.46	8.63	200°C, 200bar, Z:0.864	cond5	19.97	4.42	16.57	8.60	3.55	200°C, 200bar, Z:0.864
Average (%)	6.21	6.32	3.39	3.45	3.53		Average (%)	7.74	2.22	6.26	3.92	1.87	

Pressure Ratio	IG	IGZ	Glass man	BNI	Pham	200°C, 115bar, Z:0.906	Head Parameter	IG	IGZ	Glass man	BNI	Pham	200°C, 115bar, Z:0.906
cond1	0.63	0.65	0.32	0.34	0.06	130°C, 100bar, Z:0.825	cond1	9.13	0.10	7.69	1.67	0.00	130°C, 100bar, Z:0.825
cond2	1.51	1.55	0.73	0.77	0.11	90°C, 90bar, Z:0.748	cond2	18.03	0.23	15.04	3.76	0.01	90°C, 90bar, Z:0.748
cond3	3.07	3.16	1.34	1.41	0.16	60°C, 80bar, Z:0.663	cond3	27.88	0.46	22.90	6.99	0.01	60°C, 80bar, Z:0.663
Average (%)	1.74	1.78	0.80	0.84	0.11		Average (%)	18.35	0.27	15.21	4.14	0.01	

Outline of code evaluation

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Select best gas model

Pham model

*Only by code evaluation, Not by experimental results

Experimental Facility : ABC test loop

1 AMB-TAC (140kW) 3 Control Valves (2 Pneumatic, 1 Electric) 3 Heat Exchangers (1 Recuperator, 2 Pre-cooler) 1 Heater (Cartridge, 50kW)

Water

- cause the oil to dissolve in the $S-CO_2$.

Experimental Facility : AMB-TAC

• The compressor and turbine in the ABC test loop are both radial turbomachinery and coupled by one shaft. • The advantage of a TAC is that the work done by the turbine reduces the work consumed by the compressor. • The rotor assembly of the TAC is supported by an active magnetic bearing because conventional oil bearings would

• There are two radial bearings and one axial bearing supporting the TAC. The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Turbine Nozzle	Dimension	Unit
Inlet blade angle	35	degree
Outlet blade angle	72	degree
Inlet radius	22.82	mm
Outlet radius	19.1	mm
Blade height	3.91	mm
Number of blades	20	ea

Turbine Rotor	Dimension	Unit
Inlet blade angle	0	degree
Outlet blade angle (hub)	40	degree
Outlet blade angle (tip)	46	degree
Inlet radius	17.75	mm
Outlet radius (hub)	19.1	mm
Outlet radius (tip)	4.19	mm
Inlet blade height	3.81	mm
Axial length	9.907	mm
Number of blades	10	ea

• As the RPM increases, mass flow rate increases linearly to RPM. Pressure difference also form a quadratic equation to RPM. • As mass flow rate decreases in a fixed RPM by adjusting control valves, pressure ratio also decreases. • Due to the characteristics of magnetic bearings, the vibration of the compressor caused fluctuations in the mass flow rate. • The higher the RPM, the more the compressor and shaft vibrate, so at 27,000 RPM and above, the mass flow rate fluctuation is severe. The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

Measured data of turbine test

Post-processing of measured data

- It is shown in the table that for high RPM cases, the turbine inlet temperature becomes lower than the turbine outlet temperature.
- outlet to turbine inlet experiences a large viscous heating. representing the actual turbine inlet temperature since the measurement is performed before the secondary flow
- Because the secondary flow coming from compressor • Thus, the turbine inlet temperature is not correctly merges with the main flow.
- It isn't possible to measure thermal properties in small clearance secondary flow path.
- Therefore, the enthalpy from the secondary flow had to be corrected with the newly developed windage loss model.

RPM Turbine Inlet Temp (°C) Turbine Outlet Temp (°C) Turbine Inlet Pressure (bar) Turbine Outlet Pressure (bar) State State 12,000 55.22 46.91 77.11 76.25 15,000 54.85 47.28 77.59 76.25 18,000 56.05 49.75 79.57 77.68 21,000 55.76 51.34 81.00 78.47 24,000 56.53 52.95 82.00 78.66 27,000 57.93 55.50 83.84 79.65 28,000 58.13 56.24 84.37 79.85 29,000 57.68 56.18 84.38 79.53 30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17						
12,000 55.22 46.91 77.11 76.25 15,000 54.85 47.28 77.59 76.25 18,000 56.05 49.75 79.57 77.68 21,000 55.76 51.34 81.00 78.47 24,000 56.53 52.95 82.00 78.66 27,000 57.93 55.50 83.84 79.65 28,000 58.13 56.24 84.37 79.85 29,000 57.68 56.18 84.38 79.53 30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17	RPM	л Turbine Inlet Temp (°C)	Turbine Outlet Temp (°C)	Turbine Inlet Pressure (bar)	Turbine Outlet Pressure (bar)	92
15,000 54.85 47.28 77.59 76.25 18,000 56.05 49.75 79.57 77.68 21,000 55.76 51.34 81.00 78.47 24,000 56.53 52.95 82.00 78.66 27,000 57.93 55.50 83.84 79.65 28,000 58.13 56.24 84.37 79.85 29,000 57.68 56.18 84.38 79.53 30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17	12,000	00 55.22	46.91	77.11	76.25	
18,000 56.05 49.75 79.57 77.68 21,000 55.76 51.34 81.00 78.47 24,000 56.53 52.95 82.00 78.66 27,000 57.93 55.50 83.84 79.65 28,000 58.13 56.24 84.37 79.85 29,000 57.68 56.18 84.38 79.53 30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17	15,000	00 54.85	47.28	77.59	76.25	88
21,000 55.76 51.34 81.00 78.47 24,000 56.53 52.95 82.00 78.66 27,000 57.93 55.50 83.84 79.65 28,000 58.13 56.24 84.37 79.85 29,000 57.68 56.18 84.38 79.53 30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17	18,000	00 56.05	49.75	79.57	77.68	00
24,000 56.53 52.95 82.00 78.66 27,000 57.93 55.50 83.84 79.65 28,000 58.13 56.24 84.37 79.85 29,000 57.68 56.18 84.38 79.53 30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17	21,000	00 55.76	51.34	81.00	78.47	00
27,000 57.93 55.50 83.84 79.65 28,000 58.13 56.24 84.37 79.85 29,000 57.68 56.18 84.38 79.53 30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17	24,000)00 56.53	52.95	82.00	78.66	듄 84
28,000 58.13 56.24 84.37 79.85 29,000 57.68 56.18 84.38 79.53 30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17	27,000	00 57.93	55.50	83.84	79.65	d en
29,000 57.68 56.18 84.38 79.53 30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17	28,000	00 58.13	56.24	84.37	79.85	IS 82
30,000 57.90 56.81 84.95 79.78 31,000 58.39 57.73 85.59 80.09 32,000 58.36 58.13 85.98 80.17	29,000	00 57.68	56.18	84.38	79.53	80
31,000 58.39 57.73 85.59 80.09 78 32,000 58.36 58.13 85.98 80.17	30,000	00 57.90	56.81	84.95	79.78	
32,000 58.36 58.13 85.98 80.17	31,000	00 58.39	57.73	85.59	80.09	78
	32,000	00 58.36	58.13	85.98	80.17	70
33,000 58.92 59.10 86.71 80.56	33,000	00 58.92	59.10	86.71	80.56	76
34,000 59.63 60.24 87.52 81.01 74	34,000)00 59.63	60.24	87.52	81.01	74
35,000 59.44 60.39 87.90 81.07	35,000	00 59.44	60.39	87.90	81.07	25
36,000 59.07 60.32 88.16 80.97	36,000)00 59.07	60.32	88.16	80.97	

Post-processing of measured data

- Due to the leakage outlet state (pressure or density) is unknown, iterating calculation was done.

• Turbine work is calculated by the difference between inlet enthalpy and outlet enthalpy. • Inlet enthalpy is calculated by mass flow rate averaged mixing of the leakage flow enthalpy and main stream enthalpy. • Leakage flow enthalpy is calculated by adding the compressor outlet enthalpy and viscous heating power (i.e. windage loss).

let)	Corrected Turbine inlet Temp (°C)	Turbine Outlet Temp (°C)	Turbine Inlet Pressure (bar)	Turbine Outlet Pressure (bar)
	47.71	46.91	77.11	76.25
	48.77	47.28	77.59	76.25
	51.51	49.75	79.57	77.68
	53.91	51.34	81.00	78.47
	56.50	52.95	82.00	78.66
	60.17	55.50	83.84	79.65
	60.57	56.24	84.37	79.85
	60.68	56.18	84.38	79.53
	62.11	56.81	84.95	79.78
	63.19	57.73	85.59	80.09
	64.19	58.13	85.98	80.17
	65.86	59.10	86.71	80.56
	67.40	60.24	87.52	81.01
	68.02	60.39	87.90	81.07
	68.52	60.32	88.16	80.97

Performance map of radial turbine

• Using the similitude analysis described earlier, the measured mass flow rate can be converted to the corrected mass flow rate. • The mass flow rate was converted to corrected mass flow rate utilizing the Pham model. Since the enthalpy of S-CO₂ changes significantly with a small temperature difference, it can be seen that the uncertainties in the work of the turbine is larger than the uncertainties in the pressure ratio or pressure difference. The 7th International Supercritical CO₂ Power Cycles • February 21 – 24, 2022 • San Antonio, TX, USA

- \checkmark The approach used to obtain the performance map of the radial turbine is indirect way.
- \checkmark By reducing the leakage flow rate, it should be possible to improve the accuracy of the turbine power, although in an indirect way.
- ✓ We are also looking for a way to add a thermometer to the small clearance inside the TAC shaft and stator casing.
- ✓ The heat generated by the viscous heating was greater than the capacity of the heater, so a wide temperature range for the turbine was not possible.
- \checkmark So, we aim to increase the heater power to raise the turbine inlet temperature and the effect of the real gas effect and best real gas model will be found out experimentally.

Future works

Summary

8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Supercritical CO² Power Cycles Symposium