Preliminary Sizing of Active Magnetic Bearings for an sCO₂ Waste-Heat Recovery Application Stator

The 8th International Supercritical CO₂ Power Cycles Symposium February 27-29, 2024, San Antonio, TX **Paper #50**

<u>**Robert Lipham¹**</u>, Dongil Shin², Aaron Rimpel¹, Amin Changizi², Dhanushkodi Durai Mariappan²

1: Southwest Research Institute, San Antonio, TX 2: GE Vernova, Niskayuna, NY

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Supercritical CO₂ Power Cycles Symposium

Winding

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office, Award Number DE-EE0009823.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Conceptual, hermetic sCO₂ WHR machines developed in previous study

WHR machines [12] High-speed (27 krpm) machine • 3.87 MW compressor • 4.83 MW turbine • 0.92 MWe starter/generator Low-speed (12 krpm) machine • 7.95 MW Turbine • 7.67 MWe generator

Both machines designed with sCO₂ gas bearings

83 b

Fig 15. High-speed gas-generator 27krpm: (1) turbine shaft, (2) turbo-compressor casing, (3) turbine nozzle ring, (4) 3 stage shrouded axial turbine, (5) starter-generator (S/G) shaft, (6) laminations, (7) permanent magnet segments, (8) carbon fiber retainment sleeve, (9) armature end windings, (10) armature core, (11) cooling jacket, (12) S/G casing, (13) generator radial bearing, (14) midspan radial bearing, (15) tie rod, (16) shrouded centrifugal compressor impeller, (17) balance piston, (18) spinner cone, (19) impeller eye seal, (20) balance piston seal, (21) compressor-end bearing, (22) thrust runner, (23) thrust bearing system, (24) turbine inlet, (25) turbine exhaust, (26) high pressure zone, (27) lower pressure zone, (28) thin-film riding seal, (29) compressor suction, (30) compressor discharge

[12] Ertas, B, Zierer, J, McClung, A, Torrey, D, Bidkar, RA, Hofer, D, Rallabandi, V, Singh, R, & Zhang, X. "Super-Critical Carbon Dioxide Power Cycle for Waste Heat Recovery Utilizing Hermetic Oil-Free Turbomachinery: Cycle and Conceptual Turbomachinery Design." Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 12: Supercritical CO₂. Boston, Massachusetts, USA. June 26–30, 2023. V012T28A033. ASME

Goal: To develop conceptual designs for these machines with active magnetic bearings (AMBs)

Why?

AMBs allow greater control of rotordynamics AMBs can operate at zero speed and zero process-gas pressure

Outputs of design process

- Bearing sizing
- AMB dynamic coefficients
- Rotordynamics analysis
- Target AMB closed-loop stiffness and damping values

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Challenges High-temperature performance sCO₂ compatibility

System load requirements

AMB sizing calcs & shaft parameter selection

> AMB parameters & shaft geometry requirements

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Yes

Rotordynamics: Damped Eigenvalues

> Damped modes & AMB damping requirements

Results satisfactory?

Yes

AMB controller development

No

$F_{Total} = F_{Static} +$

ANB	F static
Radial	System
Thrust	Req.

AMB load requirements

- F _{Dynamic}

F <i>Dynamic</i>
F_{static}
0

Machina	Poorina	Load Requirement		
wachine	Dearing	Static [lbf]	Total [lbf]	
	HS compressor	69	138	
-ligh-speed	HS thrust	2000	2000	
(27 krpm)	HS midspan	73	146	
	HS generator	39	78	
Low-speed machine (12 krpm)	LS turbine NDE	179	358	
	LS turbine DE	289	578	
	LS thrust	3500	3500	
	LS generator DE	354	708	
	LS generator NDE	320	640	

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

$F_{x} = \frac{\mu_{0}A_{R}N^{2}\cos(\theta)}{4} \left(\frac{(I_{b}+I_{c})^{2}}{(g_{0}-x\cos(\theta))^{2}} - \frac{(I_{b}-I_{c})^{2}}{(g_{0}+x\cos(\theta))^{2}}\right)$ $2g_0B_{sat}$ $I_b \triangleq -I_{max}$ ¹max $\mu_0 N$ $\mu_0 A_R N^2 I_{max}^2 \cos(\theta)$ $F_{\chi,C}$ $4g_0$ Auxiliary bearing $\mu_0 A_R N^2 I_{max}^2 \cos(\theta)$ $F_{\chi,L}$ $4(g_0 + x_c \cos(\theta))^2$

Thrust AMB design is focused on center force

 $F_z = \frac{\mu_0 A_T N^2}{4} \left(\frac{(I_b + I_c)^2}{(g_0 - z)^2} - \frac{(I_b - I_c)^2}{(g_0 + z)^2} \right)$

 $2g_0B_{sat}$ **1**max

 $I_b \triangleq \neg I_{max}$

AMB dynamic components drive controller development

$F_{x} \cong K_{p}x + K_{I}I_{c}$

 $V = L \frac{dI_c}{dt} + R(I_b + I_c)$

 $\mu_0 A_R N^2 \cos(\theta) I_b$ g_0^2 $\mu_0 A_T N^2 I_b$ g_{0}^{2}

AMB load requirements drive sizing

 $F_{x,L} = \frac{\mu_0 A_R N^2 I_{max}^2 \cos(\theta)}{4(g_0 + x_c \cos(\theta))^2}$

 $F_{z,c} = \frac{\mu_0 A_T N^2 I_{max}^2}{4g_0^2}$

 $F_{x,c} = \frac{\mu_0 A_R N^2 I_{max}^2 \cos(\theta)}{4a_0^2}$

AMB Type	Load
Radial	F_{χ}
	F_{χ}
Thrust	F _z

Need good magnetic properties at 1000 °F

- FeCoVn alloy
- Curie point: ~1700 °F
- permeability at 1000 °F

Hiperco[®] 50 selected for AMB magnetic materials

Maintains good saturation flux density and

Properties do change with temperature

Saturation flux density • 2.3 T @ 73 °F 1.9 T @ 1000 °F

AMB sizing efforts provide shaft geometry requirements

Machine

High-speed machine (27 krpm)

Low-speed machine (12 krpm)

		Static			Total		
	Bearing	Req [lbf]	F _L [lbf]	SF	Req [lbf]	F _c [lbf]	SF
	HS compressor	69	154	2.2	138	236	1.7
	HS thrust	N/A	N/A	N/A	2000	2,670	1.3
-	HS midspan	73	193	2.6	146	295	2.0
	HS generator	39	154	4.0	78	236	3.0
	LS turbine NDE	179	289	1.6	358	442	1.2
	LS turbine DE	289	382	1.3	578	583	1.0
	LS thrust	N/A	N/A	N/A	3500	3,640	1.0
	LS generator DE	354	475	1.3	708	725	1.0
	LS generator NDE	320	475	1.5	640	725	1.1

AMB dynamic coefficients show room for further optimization

Machine

High-speed machine (27 krpm)

Low-speed machine (12 krpm)

Bearing	K _p [lbf/in]	K _I [lbf/A]	I _b [A]	L [mH]
HS compressor	11,100	49.1	4.8	12.3
HS thrust	134,000	506	5.3	108
HS midspan	13,900	61.4	4.8	15.3
HS generator	11,100	49.1	4.8	12.3
LS turbine NDE	20,800	138	3.2	51.7
LS turbine DE	27,500	182	3.2	68.3
LS thrust	182,000	689	5.3	147
LS generator DE	34,200	226	3.2	84.8
LS generator NDE	34,200	226	3.2	84.8

Preliminary rotordynamics models developed to validate shaft geometry

High-spee machine (27 krpm)

Low-spee turbine (12 krpm)

Low-spee generator (12 krpm

	Mode	Freq. [cpm]	Target Freq. [cpm]	Percent Difference	Moc
٦d	1	6,962.3	7,041.9	-1.1%	Cyl
)	2	8,956.9	9,047.9	-1.0%	С
	3	15,233.4	17,122.9	—11%	1st E
	4	35,821.1	3,5841.4	-0.1%	2 nd E
	1	5,690.8	5,661.9	0.5%	Cyl
ed S	2	7,769.0	7,332.3	0.5%	С
I)	3	15,311.6	15,240.6	0.5%	1st E
	1	4,034	4,020	-0.3%	Cyl
e or	2	7,193	7,593	5.6%	С
'	3	23,029	24,581	6.7%	1st E

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

de Type

- lindrical
- onical
- Bending
- Bending
- lindrical
- onical
- Bending
- lindrical
- onical
- Bending

WHR machine designs modified for AMBs

High-speed machine (27 krpm) with AMBs

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Low-speed machine (12 krpm) with AMBs

AMB rotordynamics: High-speed machine (27 krpm)

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

CL Stiffness CL Dampi 200,000 lbf/in 70 lbf-s/ir

ing	Damped SM
n	25.0%

AMB rotordynamics: Low-speed turbine (12 krpm)

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

CL Stiffness CL Dampi 200,000 lbf/in 180 lbf-s/

ing	Damped SM
'n	25.2%

AMB rotordynamics: Low-speed generator (12 krpm)

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

CL Stiffness CL Dampi 100,000 lbf/in 125 lbf-s/

ng	Damped SM
'n	86.0%

Rotordynamics results provide closed-loop stiffness and damping targets for controller development

Rotor

High-speed machine (27 krpm)

Low-speed turbine (12 krpm)

Low-speed generator (12 krpm)

Radial Bearing	Required Closed-Loop Stiffness [lbf/in]	Required Closed-Loop Damping [lbf-s/in]	Se
HS compressor			
HS midspan	200,000	70.0	
HS generator			
LS turbine NDE		100	
LS turbine DE	200,000	IOU	
LS generator DE	400 000		
LS generator NDE			

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Damped paration Margin

25.0%

25.2%

86.0%

Calculations performed Bearing sizing AMB dynamic coefficients Rotordynamics analysis Target AMB closed-loop stiffness and damping values

Conclusions

Avenues for detailed design

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Magnetic FEA

In-depth control modeling

Refined rotordynamics

Catcher bearing drop simulations

