

1

Evaluation of S-CO₂ Compressor Inlet Temperature Controllers

Gihyeon Kim (KAIST), Seungkyu Lee (KAIST), In Woo Son (KAIST), Jeong Ik Lee (KAIST),

contact email : orca2005@kaist.ac.kr

- S-CO₂ power conversion system are adaptable to a variety of heat sources with a variety of applications.
 - Waste heat recovery
 - Marine propulsion
 - Distributed generation
- The output of the S-CO₂ power conversion system should be changing by applications need and sources input.

- Load-following operation is possible using well-studied control strategies.
- Using known control strategies, system mass flow rate and the work of the turbomachinery changes.
- This changes make the inlet properties of the compressor changes, which is the closest to the critical point.

- The changes in compressor inlet temperature and pressure affect:
 - Compressor related thermodynamic properties
 - Compressor surge line
 - Compressor efficiency
 - Compressor safety margin
- For safe and efficient compressor operation during the load following, compressor inlet condition control is required.

- Previous compressor inlet temperature control research has been mostly code-based and lacked experimental validation.
- The organic Rankine cycle (ORC) is well studied for control because the nonlinearity of the system prevents classical PID methods from working well.
- S-CO₂ passing through a precooler also exhibits nonlinear thermophysical properties, requiring an ORC-like approach.

Compressor Inlet Temperature Controller Researches

Organization	Controllor Typo	Experiment or	Year
Organization	Controller Type	code	
SNL	Manual Control	Experiment	2010
ANL	PI; Trial and Error	Code	2015
KAIST	PID; Ziegler-Nichols	Code	2016
Rolls-Royce	PID; Transfer	Codo	2018
	Function	Code	

Summary of Control Techniques for ORC Systems

Control technique	Linear/Nonlinear	Development effort	CPU effort	Performance
PID (empirical)	N/A	+	+++	-
LQ	Linear	-	+	++
Adaptive	Linear/Nonlinear	-		+++

- In order to generalize the process, system modelling and controller design are carried out using simulation code only.
- The designed controllers are evaluated using the S-CO₂ experimental loop.

ABC Test Loop

- Designed for an integrated experiment on the simple recuperated S-CO₂ cycle
- Enables I/O of data using programmable logic controller and computer using LabVIEW
- Control valves for turbine bypass control and compressor experiment
- Magnetic Bearing Turbo Alternator Compressor (TAC)
- PCHE type precooler and recuperator

Magnetic Bearing TAC

- The Multi-dimensional Analysis of Reactor Safety (MARS) code is a nuclear thermalhydraulic safety code developed by Korea Atomic Energy Research Institute (KAERI).
- MARS was developed based on USNRC's RELAP5/MOD3.2.1.2 and COBRA-TF to calculate the transient multi-dimensional behavior of thermal-hydraulic systems in light water reactors.
- To conduct MARS simulation for S-CO₂ PCHE system, KAIST research team add two implementations to MARS
 - Precise physical properties of CO₂ based on NIST's REFPROP
 - Heat transfer correlation of PCHE
- System modelling and controller design only use the data from MARS code.

- The input and output signals are used after normalization.
- At the design point, the transfer function is estimated based on the least squares method, using the input and output results of the MARS code.
- For the off-design condition, model $\tilde{G}_{on}(z)$ at the design point was extended by multiplying it with a lumped correction factor C_f .

$$\tilde{G}(z) = C_f \tilde{G}_{on}(z) = C_f \frac{0.01989 \, z \, + \, 0.004617}{z^2 - \, 0.3074 \, z \, - \, 0.1112}$$

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

- LQ Controller; Optimize control based on the performance index
 - $J = \sum_{k=0}^{n} e^{T}(k)Qe(k) + u^{T}(k)Ru(k)$
 - First term penalize errors, second term penalize input.
 - The reason for penalize input is to penalize controller power consumption.
- Feedback parameter K can be obtained using Ricatti equation, which has a proper solution.

• Observer for full state information.

- State-state error is likely to occur when use LQ controller directly in the real system.
- Error cause by model uncertainties.
 - Uncertainty in the MARS modeling of the actual system
 - Uncertainty in the estimated transfer function
 - Uncertainty in the lumped correction factor
- Additional controller to reduce state-state error
 - Disturbance OBserver (DOB)
 - Linear Quadratic Integral (LQI)
 - Self-Tuning Controller

- Disturbance Observer (DOB); force system to follow the model
- Remove the effects of model uncertainty and external disturbances by calculating a lumped disturbance
- Q-filter need to be selected

- Linear Quadratic Integral (LQI); integrator added to the LQ controller
- The integrator aims to remove steady-state errors due to model uncertainty.

- Self-Tuning Controller; based on adaptive control
- Uses online information of input signals and observed outputs
- Update the parameters of the controller over time
- Lumped correction factor
 is updated over time

- According to ASME PTC 10-1997 Section 3, the error range for the compressor inlet temperature cannot exceed 0.5% in absolute temperature.
- As no correlation between a larger input and a larger energy usage for controlling the system, and compensate total operating time, the normalized performance index Jn is selected.
- The smaller normalized performance index, the better controller is.

Name	Evaluation Parameter	Basis	Numerical Form	
Criterion 1	Maximum Error	ASME PTC 10- 1997 Section 3	Size of Error (%) < 0.5%	
Criterion 2	Performance Index	Optimal Control Theory	$J_n = \frac{1}{n} \sum_{k=0}^n \left(e(k) \right)^2$	

PID Controller

- Excessive overshoot and vibration were observed
- The controller requests to operate valve beyond the control range, which resulted in loosing precision of the control
- The maximum error is 1.05%, which violate criterion 1.

LQ Controller

- Steady-state error was observed.
- A steady-state was reached for each disturbance, but a certain deviation compared to the set point temperature was continuously shown.
- Estimated lumped correction factor C_f causes the error
- The maximum error is 0.52%, which violate criterion 1.

- LQ Controller with DOB 1
- Compare to LQ controller, steady-state error was reduced.
- Steauy-state error still exists and shows high fluctuation when the turbine bypass valve is open and closed.
- Maximum error is 0.43%, which satisfies criterion 1.
- The overall performance index J_n is 0.153

- LQ Controller with DOB 2
- Compare to LQ controller, steady-state error was reduced.
- Compare to DOB type 1, the fluctuation when the turbine bypass valve is open and closed is reduced significantly.
- Maximum error is 0.27%, which satisfies criterion 1.
- The performance index J_n is 0.151

LQI Controller

- Compare to LQ controller, steady-state error was significantly reduced.
- The oscillation increased in the case of decreasing TAC rpm scenario.
- Maximum error is 0.44%, which satisfies criterion 1
- The overall performance index Jn is 0.059

- Self-Tuning LQ Controller
- Compare to LQ controller, steady-state error was reduced.
- Effect obtained by reducing the inaccuracy of the model itself by using the method of calculating the lumped correction factor C_f
- Maximum error is 0.32%, which satisfies criterion 1.
- The performance index J_n is 0.192

Discussion

Criterion 1: Maximum Error

Controller Type	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Overall
LQI	0.07%	0.06%	0.44%	0.09%	0.32%	0.44%
DOB Q-filter 1	0.06%	0.07%	0.43%	0.28%	0.26%	0.43%
DOB Q-filter 2	0.11%	0.21%	0.25%	0.13%	0.27%	0.27%
Self-Tuning LQ	0.14%	0.11%	0.26%	0.32%	0.22%	0.32%

Criterion 2: Performance Index

Controller Type	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Overall
LQI	0.004	0.011	0.110	0.011	0.126	0.059
DOB Q-filter 1	0.014	0.016	0.235	0.277	0.182	0.153
DOB Q-filter 2	0.019	0.191	0.123	0.078	0.219	0.151
Self-Tuning LQ	0.097	0.065	0.144	0.430	0.098	0.192

Summary & Conclusion

- During the load-following operation of S-CO₂ Brayton cycle, compressor inlet condition is changed.
- For efficient and safe operation of compressor, inlet temperature should be maintained.
- Existing research has limitation that use classical PID method, code-based and lacked verification via experiments.
- Controllers based on the LQ controller, designed with a well verified system code, can successfully control a physical system without the need for a further tuning process.
- LQI controller is optimal when the CO₂ mass flow rate fluctuates less and does not go under the design flow rate.
- LQ controller with a DOB and a self-tuner is optimal for high fluctuation and mass flow rate going low.