

Annual Performance Profiles of CO₂-Plume Geothermal (CPG) Systems: Impact of the Ambient Conditions

Christopher Schifflechner¹, Andreas Corpancho Villasana¹, Hartmut Spliethoff¹, Martin White², Jasper de Reus³, Martin O. Saar^{3,4}, Sebastian Schuster⁵, Dieter Brillert⁵

¹⁾ Chair of Energy Systems, Technical University of Munich
²⁾ Thermo-Fluid Mechanics Research Centre, University of Sussex
³⁾ Chair of Geothermal Energy and Geofluids, Department of Earth Sciences, ETH Zurich
⁴⁾ Department of Earth and Environmental Sciences, Minneapolis
⁵⁾ Chair of Turbomachinery, University of Duisburg-Essen

Outline

- 1) CO₂-Plume Geothermal Systems (CPG): general working principle
- 2) General system characteristic
- 3) Operational characteristic
- 4) Impact of the ambient temperature & comparison of different locations
- 5) Summary & Outlook

General Motivation

- Ongoing transformation towards renewable energy sources
- ► Nevertheless, CCS might be pivotal to limiting global warming to 1.5 or at least 2.0°C

CO₂-Plume Geothermal (CPG) Systems

CPG:

- combines CCS with geothermal energy utilization
- uses the CO₂ for power generation, while storing the CO₂ permanently
- can significantly increase the power output of a geothermal system compared with the traditional system using water/brine
- can improve the economics of CCS

→ It is a true CC<u>US</u> technology

CO₂-Plume Geothermal (CPG) Systems

- Can be applied in naturally permeable reservoirs at 2-5 km depth
- These reservoirs include typically depleted oil/gas reservoirs and deep saline formations
- Direct expansion of the CO₂ within a turbine for power generation
- Condensation of the CO₂ before the reinjection well to ensure a sufficient density difference
- In the case of a thermosiphon system, no compressor is necessary
- The additional application of a pump compressor is a promising option to increase the power output

Application potential – recent numbers for the U.S.

- Recent publication at the Stanford Geothermal Workshop by Ogland-Hand et al. (2024)
- Evaluation of the cost and capacity of sedimentary basin geothermal power
- Applying a CPG system would result in lower LCOE for most of the suitable regions

General operational characteristic

General operational characteristic

- Optimal mass flow rate for each depth and system type
- Increasing net power output for deeper reservoirs
- Actual power output depends mainly on the system's number of wells and depth

General operational characteristic

- Optimal mass flow rate for each depth and system type
- Increasing net power output for deeper reservoirs
- Actual power output depends mainly on the system's number of wells and depth
- ► Higher net power output by the pumped system, but lower thermal efficiencies for a pumped system

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Impact of the injection temperature

- A lower injection temperature increases the density variation between the CPG's production and injection well
- The higher optimal mass flow rate and the lower required pump power demand increase the net power output
- E.g. lowering the injection temperature by 5 K, might increase the theoretical achievable net power output by 20 %

Turbine inlet and outlet conditions

- Significant variations of the turbine inlet temperature and pressure with the system's depth
- Both temperature and pressure levels are lower than for other sCO₂ applications (e.g. waste heat recovery)
- Rather constant inlet density
- Potential state at the turbine outlet depends also on the system's depth and flow rate (might require a certain reheating for lower depths)

Impact of the injection temperature

For the same turbine in- and outlet pressures, the turbine inlet temperature has a significant impact on the achievable mass-specific power output

Case study regions: all promising for CPG, but different local climate

Case study regions: all promising for CPG, but different local climate

Modeling

Off-design models

Open-source modelling framework from ETH

DOI 10.5281/zenodo.4383138

Annual net power output

Summary & Outlook

Summary

- CPG combines CCS with geothermal energy utilization
- Tremendous market potential for CO₂ equipment manufacturers
- Impact of the ambient temperature and off-design behavior on the achievable net power output
- Significant variations between the different regions and seasons

Outlook

- Thermo-economic optimization also focuses on the optimal design point selection
- Incorporating the effect of the presence of dissolved water and other impurities in the CO₂ stream and its potential changes during the project's lifetime
- Paving the way towards a first large-scale demonstration project
- ➔ Increasing demand for interdisciplinary research and development

Annual Performance Profiles of CO₂-Plume Geothermal (CPG) Systems: Impact of the Ambient Conditions

Thank you for your attention!

Christopher Schifflechner¹, Andreas Corpancho Villasana¹, Hartmut Spliethoff¹, Martin White², Jasper de Reus³, Martin O. Saar^{3,4}, Sebastian Schuster⁵, Dieter Brillert⁵

c.schifflechner@tum.de

- ¹⁾ Chair of Energy Systems, Technical University of Munich
- ²⁾ Thermo-Fluid Mechanics Research Centre, University of Sussex
- ³⁾ Chair of Geothermal Energy and Geofluids, Department of Earth Sciences, ETH Zurich
- ⁴⁾ Department of Earth and Environmental Sciences, Minneapolis
- ⁵⁾ Chair of Turbomachinery, University of Duisburg-Essen

