

Experimental Demonstration of an Advanced CO₂ Axial Compressor for CO₂-based Power Cycles and Energy Storage Systems

The 8th Supercritical CO₂ Power Cycles Symposium

Jeongseek Kang¹, Alex Vorobiev¹, James B. Sutton¹, William S. Stewart¹, Joshua D. Cameron¹, Scott C. Morris¹, Mark G. Turner², Kyle P. Sedlacko³, Jason D. Miller³, Timothy J. Held³

1 Notre Dame Turbomachinery Laboratory, University of Notre Dame, South Bend, IN, USA
 2 University of Cincinnati, Cincinnati, OH, USA
 3 Echogen Power Systems, Akron, OH, USA

Feb 26-29, 2024

This presentation contains information proprietary to the University of Notre Dame or its research partners. Do not distribute without permission.

Centrifugal Compressor

2

NOTRE DAME

BACKGROUND & RESEARCH QUESTION

Question 1

Does the axial CO₂ compressor have high efficiency/performance potential?

Question 2

Can we evaluate the performance of axial CO₂ compressor(s) experimentally with high fidelity?

mission

TEAM & Co-authors

Jeongseek Kang

Alex Vorobiev James B. Sutton William S. Stewart Joshua D. Cameron Scott C. Morris

Kyle P. Sedlacko Jason D. Miller Timothy J. Held

Mark G. Turner

		IGV	Rotor 1	Stator 1
Number of airfoils	-	43	69	114
Radius of Blade Leading Edge Tip	mm	131	129	128
Radius of Hub	mm	102	102	102
Leading Edge Blade angle at mid-span	deg	0	-58.78	48.53
Trailing Edge Blade angle at mid-span	deg	10.7	-42.46	14.0

Rotational Speed	rpm	19,800
Inlet Total Pressure	kPa	2,770
Inlet Total Temperature	O°	98.0
Total to Total Pressure Ratio	-	1.41
Mass flowrate	kg/s	125

[Stage 1 rotor]

[1] Matthew Ha, Justin Holder, Saugat Ghimire, Adam Ringheisen, and Mark. G. Turner, 2022, "Detailed Design and Optimization of the First Stage of an Axial Supercritical CO2 Compressor," ASME Turbo Expo 2022, GT2022-82590.

[2] Justin M. Holder, Adam Ringheisen, Matthew Ha, Saugat Ghimire and Mark. G. Turner, 2022, "Improved Automated Turbomachinery Hot-to-Cold Transformation with Cold-to-Hot Capabilities For Off-Design Analysis," AIAA SciTech 2022 Forum, AIAA2022-2436.

U. of Notr

IGV & Stator 1

[Stator 1]

UNIVERSITY OF NOTRE DAME

1.5 Stage Compressor Test Rig

Axial Compressor

10MW sCO2 Compressor Test Facility @ NDTL

(Ref) Jeongseek Kang, Alex Vorobiev, Joshua D. Cameron, Scott C. Morris, Ryan Wackerly, Kyle P. Sedlacko, Jason D. Miller, and Timothy J. Held, 2021, "10MW-class sCO2 Compressor Test Facility at the University of Notre Dame," The 4th European sCO2 Conference for Energy Systems, March 22-26, 2021-sCO2.eu-144. **ŤŮŖŖŎ**ŴĄĊŮŀŇĘŔŸ

10MW sCO2 Compressor Test Facility @ NDTL

Facility : Cooling Towers & CO2 Inventory System

Cooling towers – 12MW

2 X 5 Ton (12,000LBS) CO2 tanks

NOTRE DAME

missio

permission

ribute

Notre Dame proprietary

U. of I

$$\eta_{TT} = \frac{h_{T2S} - h_{T1}}{h_{T2} - h_{T1}} \qquad PR(TT) = \frac{P_{T2}}{P_{T1}}$$

 h_{T1} – mass specific total enthalpy, stage inlet h_{T2} – mass specific total enthalpy, stage exit h_{T2S} – mass specific total enthalpy for isentropic flow, stage exit

$$h_T = h(T_T, P_T)$$

$$h_{T2S} = h(s_{T1}, P_{T2})$$

$$s_{T1} = s(T_{T1}, P_{T1})$$

Instrumentation – Inlet Rakes

[Inlet Rakes : 3EA] 5 Kielheads per rake : 10%(#1), 30%(#2), 50%(#3), 70%(#4), and 90%(#5) of the span

[Exit Rakes : 6EA] 4 Kielheads per rake X 2 set with different insertion depth

11.4%(#1), 22.5%(#3), 33.5(#3), 44.6%(#4), 55.7%(#5), 66.8%(#6), 77.8%(#7), and 88.9%(#8) of the span

Rake Calibration

Uncertainty Analysis (1) - Efficiency

$$\eta_{TT} = \frac{h_{T2S} - h_{T1}}{h_{T2} - h_{T1}}$$

$$\delta \eta^2 = \left(\frac{\partial \eta}{\partial h_{T1}} \delta h_{T1}\right)^2 + \left(\frac{\partial \eta}{\partial h_{T2}} \delta h_{T2}\right)^2 + \left(\frac{\partial \eta}{\partial h_{T2S}} \delta h_{T2S}\right)^2$$

$$\delta \eta^2 = \left(\frac{\eta - 1}{h_{T2} - h_{T1}} \delta h_{T1}\right)^2 + \left(\frac{\eta}{h_{T2} - h_{T1}} \delta h_{T2}\right)^2 + \left(\frac{1}{h_{T2} - h_{T1}} \delta h_{T2S}\right)^2$$

$$\delta h^2 = \left(\frac{\partial h(T, P)}{\partial T} \delta T\right)^2 + \left(\frac{\partial h(T, P)}{\partial P} \delta P\right)^2$$

$$\delta h^2 = \left(\frac{\partial h(s, P)}{\partial s} \delta s\right)^2 + \left(\frac{\partial h(s, P)}{\partial P} \delta P\right)^2$$

$$\delta s^2 = \left(\frac{\partial s(T, P)}{\partial T} \delta T\right)^2 + \left(\frac{\partial s(T, P)}{\partial P} \delta P\right)^2$$

NOTRE DAME

Uncertainty Analysis (1) - Efficiency

 \Box Total uncertainty of the isentropic efficiency (η_{TT}) = ±1.96%

- * Including
- ✓ Calibrated E-Type Thermocouple
- ✓ DAQ system uncertainty
- ✓ Accuracy of pressure scanner
- ✓ CO2 property (Refprop 10.0)

$$PR(TT) = \frac{P_{T2}}{P_{T1}} = \frac{P_{REF} + P_{NS02}}{P_{REF} + P_{NS01}}$$

$$\left(\frac{\delta PR}{PR}\right)^{2} = \frac{\delta P_{REF}^{2} + \delta P_{NS01}^{2}}{(P_{REF} + P_{NS01})^{2}} + \frac{\delta P_{REF}^{2} + \delta P_{NS02}^{2}}{(P_{REF} + P_{NS02})^{2}}$$

□ Total uncertainty of the pressure ratio (TT) @ 100% speed= ±0.0028

do not distribute without permission

U. of Notre Dam

Isentropic Efficiency & Pressure Ratio (TT)

0850 Test Rig (Single and Three Stage)

BACKGROUND & RESEARCH QUESTION

Question 1

Does the axial CO₂ compressor have high efficiency/performance potential?

Question 2

Can we evaluate the performance of axial CO₂ compressor(s) experimentally with high fidelity?

J. of Notre Dame

mission

CONCLUSION

A performance of a **1.5 stage axial CO₂ compressor** has been experimentally measured at the 10MW-class sCO₂ compressor test facility at the University of Notre Dame. The goal of the research is to measure compressor performance with **high fidelity** and to demonstrate the high efficiency potential of the axial-type CO₂ compressor for various CO₂ cycle application.

The measured total-to-total isentropic efficiency of the compressor at 80%, 90%, and 100% of the speed was about **92.6%**, **91.7%**, **and 89.3%** respectively with the total uncertainty of the isentropic efficiency at 100% speed (19,800rpm) was $\pm 1.96\%$ which is well above the reported highest isentropic efficiency of the compressor so far.

U. of Notre Da

Q & A

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number DE-EE0008997.

□ Thank you for your attention! Q & A

[Appendix]

Design Envelope of NDTL sCO2 Compressor Test facility

do not distribute

U. of Notre Dame proprietary

Rake Calibration

NOTRE DAME

BACKGROUND

□ sCO2 Compressors – Type, Flowrate, Efficiency

Main Author	Year	Institution	Compressor Type	Compressor Driving Power
Steven A. Wright	2009	Sandia National Laboratories	Centrifugal	50 kWe
Masanori Aritomi	2011	Tokyo Institute of Technology	Centrifugal	
Jeff S. Noall	2014	Barber Nichols Inc., Sandia National Laboratories	Centrifugal	55 kW
Jekyoung Lee	2014	Korea Advanced Institute of Science and Technology	Centrifugal	
Timothy Held	2014	Echogen Power Systems	Centrifugal	2.7MW
Eric M. Clementoni	2016	Bechtel Marine Propulsion Corporation	Centrifugal	36.8 - 15.8 kW
Jae Eun Cha	2016	Korea Advanced Institute of Science and Technology	Centrifugal	
Junhyun Cho	2016	Korea Institute of Energy Research	Centrifugal	90 kW
Eric M. Clementoni	2017	Naval Nuclear Laboratory	Centrifugal	
Timothy C. Allison	2018	Southwest Research Institute	Centrifugal	
Eric M. Clementoni	2018	Naval Nuclear Laboratory	Centrifugal	
Jacqueline Lewis	2018	Naval Nuclear Laboratory	Centrifugal	
Alexander Hacks	2018	University of Duisburg-Essen, Research Center Rez	Centrifugal	7 kW
Seungjoon Baik	2018	Korea Advanced Institute of Science and Technology	Centrifugal	26 kW
Stefan D. Cich	2018	Southwest Research Institute, GE Global Research	Centrifugal	4.9 MW
Bongsu Choi	2019	Korea Institute of Energy Research	Centrifugal	90 kW
Yann Le Moullec	2019	EDF R&D China, Shouhang IHW		2.4 MW
Junhyun Cho	2019	Korea Institute of Energy Research	Centrifugal	90 kW
Eduardo Anselmi	2019	Cranfield University	Centrifugal	45 kW
Logan Rapp	2019	Sandia National Laboratories		1MW

: permission

U. of Notre Dam

sCO2 Compressor Test Facility – Specification of Main Loop

[Specification of a main CO2 Loop]

do not distribut

U. of Notre Dar

First Compressor to Test

- Aero Design : 90+% (Ha et al., 2022)
- Experimental Evaluation : Current Study

do not distribut

U. of Notre Dame propri