Modeling and Economic Analysis of SCO2 Power Systems Hybridized with a Gas Turbine

SOUTHWEST RESEARCH INSTITUTE®

February 27, 2024

Joshua Schmitt Assistant Program Manager

San Antonio, Texas Paper 38

MECHANICAL ENGINEERING

Motivation

- Explore the hypothesis of cost and performance efficiency for Gas turbines in combined cycle with SCO2
- Ground the assessment with existing turbines and limiting SCO2 components/complexity
- Microgrid (20-30 MW) scale
 - Apply to systems like the SwRI campus
 - Load following and operates off-design
- Utility (about I GW) scale
 - Compare to DOE baselines
 - Operates as a on-design baseload with a 15% downtime through the year

MECHANICAL ENGINEERING

Approach

- Pick a gas turbine generator as a consistent size and build an SCO2 cycle that uses the waste heat from the combustion turbine
- Model in Aspen Plus with REFPROP properties
- Use literature sources for combustion turbine performance and waste hot gas flow rate/composition
 - NETL baseline for utility-scale H-Class gas turbine combined cycle (GTCC)
 - NETL indirect SCO2 baseline also used to assess cost/performance of SCO2 cycles
 - EPA Study of small combustion turbines for the small system case
- Seek to maximize heat from gas turbine exhaust heat and minimize pinches in heat exchangers

MECHANICAL ENGINEERING

swri.org

Dual Cascaded (DC) Cycle

Preheat, Recuperation, Overheat (PRO) Cycle

Low Pressure SCO2

Cooler

MECHANICAL ENGINEERING

HTR

System Design Assumptions

- I5°C approach temperature in waste heat recovery exchanger
- I0°C approach temperature in recuperators and coolers
- Ambient temperature is 25°C
- SCO2 turbines are 90% isentropic efficiency
- SCO2 compressors are 80% isentropic efficiency
- 85 bar as the compressor inlet pressure
- Different compressor outlet pressures due to exchanger tuning
 - DC cycle: 300 bar
 - PRO cycle: 380 bar

MECHANICAL ENGINEERING

swri.org

Performance Results

 Fixed GT capacity for the different
scales
 Small GT exhaust: 586°C
 Large GT exhaust: 596°C
In DC cycle the SCO2 system capacity
is around half the size of the GT
In PRO cycle the SCO2 system
capacity is similar to the GT size
 Note that PRO cycle efficiency
shown is for standalone operation

	Small GT with DC Cycle	Small GT with PRO Cycle	H-Class GT with DC Cycle	H-Class GT with PRO Cycle
GT Efficiency (%)	39.1%	39.1%	43.8%	43.8%
GT Output Size (kW)	13,962	13,962	685 <i>,</i> 495	685,495
SCO2 Efficiency (%)	31.9%	39.1%*	32.4%	39.2%*
SCO2 Output Size (kW)	5,890	15,074	252,139	603,320
System Total Output Size (kW)	19,852	29,036	937,634	1,288,815
Combined System LHV Thermal Efficiency (%)	55.6%	52.4%	59.8%	55.0%

*Note that the SCO2 PRO cycle efficiency is in standalone operation assuming heat through the WHR-EX is provided externally and not by the GT exhaust

MECHANICAL ENGINEERING

swri.org

DC Cycle Waste Heat Exchanger Profile (H-Class)

Duty MW

- 15°C approach at Hot end with 18°C difference on cold ٠
- Small GT: cold end difference is 37 °C •

MECHANICAL ENGINEERING

- 10°C approach at Hot end with 12°C difference on cold ٠
- Small GT: Hot inlet is lower at 421°C with a 14°C difference on cold •

MECHANICAL ENGINEERING

DC Cycle Low Temperature Recuperator (H-Class)

Block LTR: TQ Curves

- Duty MW
- 10°C approach at Hot end with 11°C difference on cold •
- Small GT: Hot inlet is lower at 273°C with a 13°C difference on cold ٠
- CO2 Cooler Inlet Temperatures: 102°C and 101°C for large GT and small GT •

MECHANICAL ENGINEERING

swri.org

Duty MW

- 15°C approach at Hot end with 18°C difference on cold ٠
- Small GT: cold end difference is 37°C •

MECHANICAL ENGINEERING

11

PRO Cycle Recuperator (H-Class)

Block HTR: TQ Curves

Duty MW

- 10°C approach at Hot end with 55°C difference on cold ٠
- Small GT: Similar profile ٠
- Entering cooler at 150°C \bullet

MECHANICAL ENGINEERING

12

Target Application

- Utility Scale
 - Match NETL baseline profile
 - Baseload with constant power output at full capacity
- Microgrid Scale
 - Used a representative profile, SwRI campus electric load
 - Higher peaks in summer and work days
 - Scaled max power in the profile to match the overall system maximum power output

13

Off-Design

- Off-design needed for microgrid load-following operation
- Profile adopted from literature and scaled to on-design efficiency
- Future work will build an offdesign curve from sized equipment in Aspen Plus
 - Will feed into a more detailed economic estimate

• Small GT DC

swri.org

14

MECHANICAL ENGINEERING

Small GT PRO

Techno-Economic Assessment Inputs

H-Class

GT with

DC Cycle

771

2,130

1,137

- System costs built from literature on total installed cost
 - Sources that detail the cost by component
 - Components that were not present were removed, such as a recompressor

Small GT

with PRO

Cycle

1,510

2,900

2,232

Small GT

with DC

Cycle

1,510

2,900

1,946

- EPC costs based on baselines at 20%
- 30 year system with 20 year payback with 71.8% financed at 5% fixed rate
- Natural gas cost of \$ 4.64 \$/GJ_{1 HV}
- LCOE follows discounted cash flows
 - 2.5% inflation
 - 5.1% real discount rate

GT Fixed OPEX	
GT Variable OPEX	
SCO2 Fixed OPEX	
SCO2 Variable OPEX	

GT System Capacity Cost

SCO2 System Capacity

Combined Capacity Cost

 $(\frac{}{kW_{AC}})$

(\$/kW_{AC})

Cost $(\$/kW_{AC})$

H-Class

GT with

PRO Cycle

771

2,087

1,388

26	\$/kW
1.2	\$/MWh
113	\$/kW
4.4	\$/MWh

MECHANICAL ENGINEERING

15

Cost Results for Systems

	Small GT with DC Cycle	Small GT with PRO Cycle	H-Class GT wi DC Cycle
CAPEX GT System	\$21.1 M	\$21.1 M	\$528.8
CAPEX SCO2 System	\$17.1 M	\$43.7 M	\$537.1
CAPEX Combined System	\$38.2 M	\$64.8 M	\$1,066.0
EPC and Owner's Costs	\$7.6 M	\$13.0 M	\$213.2
Total CAPEX	\$45.8 M	\$77.8 M	\$1,279.2
OPEX GT System	\$0.5 M	\$0.6 M	\$26.2
OPEX SCO2 System	\$1.2 M	\$2.4 M	\$59.2
Total OPEX	\$1.6 M	\$3.0 M	\$85.4
Annual Payment for 20-year Financing	\$2.6 M	\$6.7 M	\$195.1
Capacity Factor (%)	63.4%	63.4%	8
Power Exports (MWh)	110,301	161,330	6,981,6
Natural Gas Imports (tonne _{NG})	19,821	30,761	890,4
Annual Fuel Cost (\$)	\$4.3 M	\$6.7 M	\$195.1

ith **H-Class GT with PRO Cycle** \$528.8 M 3 M \$1,259.4 M . M \$1,788.3 M D M \$357.7 M 2 M . M \$2,145.9 M \$29.3 M Μ \$110.4 M 2 M \$139.7 M M \$291.6 M Μ 5% 85% 623 9,596,516 444 1,330,768 \$291.6 M . M

MECHANICAL ENGINEERING

16

Levelized Cost of Electricity

- Initial estimate of LCOE breakdown
 - Not mature enough to match DOE baseline level of detail
- The DOE baseline LCOE
 - Coal SCO2: \$123-128/MWh - H-Class CCGT \$42.7/MWh
- Future work will refine the system design, performance estimate, CAPEX, and OPEX

MECHANICAL ENGINEERING

17

swri.org

H-Class GT with

Conclusions

- Initial assessment of two different combined cycle configurations each at two different scales
- Applied initial performance results to profiles for the specific applications
 - Load following system in a representative microgrid
 - Baseload utility scale with 85% capacity factor
- All systems were above 55% in cycle efficiency
- Initial estimate of cost and LCOE was assessed based on simple scaling parameters
 - Microgrid LCOE is \$65-73/MWh
 - Utility LCOE is \$41-47/MWh
- Further work is needed to more closely match baseline methods and refine costs and LCOE estimates

MECHANICAL ENGINEERING

18

Thank You

©SOUTHWEST RESEARCH INSTITUTE

MECHANICAL ENGINEERING

19