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Project Overview
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Project main point/goals:
1. Creating improved design for compressor airfoils 

to mitigate the multi-phase effects

2. Understanding detailed flow behavior inside a 
compressor cascade under various compressor 
inlet conditions

3. Experimentally validating the design 
improvement through testing in a compressor 
cascade rig with sCO2 as working fluid

4. Enhancing understanding and implementation of 
optical diagnostics implementation in sCO2 
applications

Rapid variations of properties near the critical point and its proximity to the saturation 
dome makes the compressor susceptible to multi-phase effects

 
T-s diagram: local flow acceleration [1] (inset: local velocity 
outside boundary layer around the surface of a compressor 
airfoil [2].
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Motivation – sCO2 Challenges
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• Overall cycle advantages realized with compressor 
operation closer to the critical point 

• High sensitivity of thermodynamic properties with 
respect to temperature near the critical point are 
of concern

• Local effects at the compressor inlet can lead to 
some flow dropping into the saturation dome

CO2 thermophysical properties at 80 Bar
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Motivation – sCO2 Performance Sensitivity to Inlet Temperature
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• Two Key Issues:
1. Peak efficiency values drops substantially as inlet temperature comes closer to critical temperature and the 

entire efficiency curve is lower
2. Drop-off at the higher flow rates is steeper and starts at lower flow rates; this substantially reduces the range of 

the compressor at lower inlet temperatures 
• Cause for #1 potentially associated with leading blade design that disrupts flow into the splitter blade at lower 

inlet temperatures causing blockage and mixing losses
• Cause for #2 is associated with phase change in the inlet “throat” leading to blockage

Subcritical effects

Motivating study Results from Hosangadi et al. “Numerical Predictions of Mean Performance and Dynamic Behavior of a 10 
MWe sCO2 Compressor with Test Data Validation”, GT2022-82017 Numerical and Validation Study 

explored the performance of Hanwha 
compressor as tested at SwRI as part of 
the DoE Sunshot program

Partially-shrouded impeller with 
8 blades and 8 splitters

2019 Data
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Leading-Edge Design Considerations
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•A new  design methodology for leading edge suction surface is 
proposed based on prior work done in centrifugal pump designs to 
reduce or eliminate multi-phase effects (i.e. cavitation) at leading 
edge suction surface

•Conventional blade design philosophy is to have blades of nearly 
constant thickness with a rounded nose

•This design leads to larger drop in pressure on suction surface that 
leads to cavitation in pump

•The new “biased-wedge” design makes a thicker suction surface 
profile to make the blade shape more like an airfoil and reducing the 
acceleration on the suction surface

•Goal of present effort is to demonstrate the same concept helps 
reduce condensation at the sCO2 compressor leading edge

•Testing performed in cascade with relative velocity settings 
corresponding to a compressor

Biased Wedge impeller blade to 
reduce pressure drop on suction 
surface 

Pressure distribution on conventional blade and “biased wedge” 
for a high energy centrifugal pump  (Ref 3)



8th International Supercritical CO2 Power Cycles   ●   February 27 – 29, 2024   ●   San Antonio, TX, USA

Biased Wedge Leading Edge Design
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Cascade Stagger“Biased Wedge” 
Blade  Design
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Geometry – Cascade Parameters
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• Designed with an inlet flow angle of 26˚ wrt to vertical
• Constant blade height of 10mm
• Solidity of 2.6
• Blade to blade spacing = 22.25mm
• Chord = 57.86mm
• Constant blade thickness of 1.5mm for baseline blade
• Two blades fully immersed
• Cascade given a positive 8˚ incidence

Final layout cascade as tested

Constant thickness baseline blade shown
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Methodology – Numerical Model Details
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Numerical Grid – Blade midspan slice

• Run using CRAFT’s CRUNCH CFD®

• NIST tables used for Thermophysical properties

• Simulations run across flow regimes to overlap with 
experimental conditions, and application conditions

• Run in full 3d to duplicate experimental test section

• Average wall y+~5 for highest flow rate cases

• Turbulence modeled by Standard two-equation k-ε model 

• Inlet condition ranges from 80 to 90 Bar, and 306K to 
310K (for validation cases). 

Numerical domain

Hosangadi et al. “Modeling Multiphase Effects in CO2 
Compressors at Subcritical Inlet Conditions”, Journal of 
Engineering for Gas Turbines and Power, Vol. 141, 2019.
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Overview of CFD Simulations
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• Initial Simulations performed at conditions that UCF pump can 
support, for validation.

• Parametric study with varying  velocity conducted at reduced inlet 
temperature of 306 K (32.85 C) 

• Parametric study in velocity also conducted at conditions relevant 
to Hanwha compressor in Sunshot program
Inlet temperature of 310 K and velocity approaching relative 
velocity at inlet tip
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Experimental Setup and Methodology for 
Numerical Validation
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Experimental Effort Objectives

11

• Design linear compressor cascade rig capable of 
accommodating optical based diagnostics

• Application of Particle Image Velocimetry for 
quantitative velocity field measurements in sCO2

• Validate numerical results with experimental data

• Evaluate feasibility of laser-based diagnostics for liquid 
phase detection
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sCO2 Loop for Cascade Testing
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• Non-Recuperated 
• Operating Pressure: 70 – 100 Bar
• Operating Temperatures: 20C – 100C (293K – 373K) (Optical Diagnostics 

Test Section Vessel Limitation)
• Mass flow rates up to 3.6 kg/min @90Bar

6 ft

The operating pump was changed 
from the gear pump to the sigma 
pump (piston type) due to higher 
flow rate capability

Sigma Pump

Experimental sCO2 rig:



8th International Supercritical CO2 Power Cycles   ●   February 27 – 29, 2024   ●   San Antonio, TX, USA

Test Facility with Current Experimental Setup
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Experimental Cascade  Assembly
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Test Section design consists of 
5 section

• Section 1: Back wall (with 
blade indent (3/16 inch))

• Section 2: Mid-Wall / Flow 
region (blades, tailboards and 
flow walls)

• Section 3: Cover wall

• Section 4: Connecting Nozzle  
(tube adapter, 5o nozzle, 
cascade adapter)

• Section 5: Inlet Tube
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Experiment Assembly for Optical Test Chamber
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Inlet Tube
L = 80.75 in

TC 
Connections

TC gland 
Fitting

6in RF 
Flange
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Particle Image Velocimetry – Optical Configuration
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-Westerweel, J. [4] 

• Thin laser sheet is generated through specialized optics, and illuminates 
seeded tracer particles (sheet <1mm thick, tracers are ~3μm diameter 
Alumina particles)

• Laser is dual-pulsed at a specified delta T, and synched with camera

• Camera is oriented perpendicular to planar laser sheet for imaging (2D-PIV)
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Cascade Test Model in Test Chamber Showing Optical Access Region
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Multiphase Testing Challenges Near Critical Point
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• Strong dependence of temperature on 
thermophysical properties near critical 
point

• Supercritical fluid entering test section 
domain can quickly cool and fall below 
the dome

• Instrumentation and full temperature 
control of downstream domain is 
necessary for accurate testing

• Optical Refractive Index is proportional 
to density. 

• Line-of-sight density variations can 
completely obstruct particle imaging

CO2 Density

Liquid CO2 flowing into 
supercritical vessel domain
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Optical Light Guide Installation
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Cascade 
Blade

Optical Cylinder 
(50mm) with SCO2 in 
test chamber

Quartz 
cylinder

Cylinder 
Holder

3” 
viewing 
window

Internal 
Field of 
view

• Image Distortion: The acrylic optical access cylinder (OD = 69mm ) worked but due to 
crazing reaction with SCO2 at the pressures and temperature, Quartz optical cylinders 
(OD = 50mm) were used

Optical Cylinder placement in 
the viewing window 3” flange
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PIV Data Acquisition – Image Post-Processed

• To increase signal-to-noise ratio, a sliding background subtraction is applied
• Note particle shift between Images

20
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Blade Performance Comparison – 90 Bar
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BaselineBiased-Wedge

• Contours of Non-dimensional Velocity Magnitude 

• Results consist of ~1400 ensemble averaged vector fields with an interrogation window size of 16x16 with 75% 
overlap. Vector resolution ~0.08mm x 0.08mm
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Blade Performance Comparison – 90 Bar

Non-Dimensional Velocity Magnitude
• As seen across the various CFD run regimes, the measured velocity field magnitude, and gradient associated with the Biased-Wedge 

suction peak is consistently lower than that measured for the baseline, constant radius leading edge.

• The baseline blade, at the suction peak is marked by velocities ~20% higher than that of the Biased-Wedge

Umax/uin = 1.34 Umax/uin = 1.11 
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Comparison with CFD - Baseline
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• CFD shows good agreement with experiment. Salient features and local suction peaks are 
captured. Suction velocity on Baseline predicted within 5.2%

Suction Peak, U/Uin=1.41Suction Peak, U/Uin=1.34

PIV CFD
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Comparison with CFD – Biased Wedge
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• CFD shows excellent agreement with experiment. Salient features and local suction peaks are 
captured. Suction velocity on Biased Wedge predicted within 1%

Suction Peak, U/Uin=1.10Suction Peak, U/Uin=1.11

PIV CFD
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Parametric Studies of Baseline and Biased 
Wedge Design at Elevated Flow Rates
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Parametric Study at Near Critical Conditions
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• Parametric study conducted at conditions closer to critical point (306 K, 80 Bar) over a range of 
velocities to characterize potential for condensation at conditions closer to compressor 
operation
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Blade Temperature Profile
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Baseline

Biased Wedge

Profiles plotted at two largest 
velocities: 42.9 m/s and 38.8 m/s
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Temperature Contours 8.14 kg/s
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Baseline

Biased Wedge

Solution for  42.9 m/s
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Liquid Condensate Concentration: 8.14 kg/s
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Baseline

Biased Wedge

Leading-edge 

Solution for  42.9 m/s
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Biased Wedge Performance For 10 MWe 
Class Compressor Conditions in Sunshot 

Program
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Parametric Study for Biased Wedge Performance at 310 K
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INLET VELOCITY
 (m/s)

INLET TEMPERATURE 
(K)

INLET PRESSURE
(MPa)

Phase Change

62 310 7.94 No

80 310 7.91 No

92 310 7.88 No

98 310 7.88 Yes

• Biased wedge calculations were performed at conditions representing the inlet tip relative 
velocity for a 10MWe class compressor

• Biased wedge design provides liquid-free performance for inlet velocity range of 62-92 m/s.

• Hanwha compressor inlet tip speed is 83.43 m/s; this indicates that biased wedge design may 
be a viable candidate for improving main compressor performance in 10MWe class
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Blade Temperature Profile
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Biased Wedge

Inlet Phase Change at  98  m/s

Inlet Temperature = 310 K
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Summary
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• An improved sCO2 compressor leading edge profile (Biased-Wedge) was developed for the 
mitigation of liquid phase formation at the leading edge.

• A linear cascade geometry was designed, manufactured and implemented into an sCO2 test 
loop for evaluation of Biased-Wedge profile performance, and CFD validation.
• PIV was demonstrated in a first of its kind experiment in sCO2, for an engineering geometry of this 

scale, and flow condition
• CFD results showed excellent agreement with experimental flow fields in capturing the magnitude of 

the leading-edge acceleration region/suction peak

• Numerical simulations were run at elevated flow rates for relevant compressor inlet 
conditions, including those of the Hanwha 10MWe compressor
• Results show the Biased-Wedge blade greatly reduces suction side liquid phase formation even at 

application relevant conditions
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Motivation - Subcritical Effects at Shroud Inlet At High Flow Rates 

37

Liquid Mass 
Fraction 

Subcritical 
Temperature

φ = 0.068 φ = 0.072 φ = 0.076 φ = 0.079

Liquid mass fraction 
isosurface of 1%



Segmented Vessel Temperature Control

• Thermocouples are instrumented throughout the vessel 
interior and exterior to monitor circumferential 
temperature variations

• Segmented heaters with individual control are used to 
maintain close to an isothermal condition on the walls 
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Particle Seeder
• Particle seeding for PIV is 

one of the greatest 
challenges for closed 
loop/high-pressure 
applications 

• Pressurizing from outside 
source not feasible due to 
variation of properties and 
inventory control

• Need a closed loop 
solution, with fine particle 
delivery control

• Seeder will allow for 
consistent seeding across 
a long duration PIV 
acquisition (leads to 
higher number of samples 
for improving statistical 
uncertainty)

Cyclone Aerosol Generator [1]

[1] Glass, M.,Kennedy, I.M., “An Improved Seeding Method for High Temperature Laser Doppler Velocimetry,” Combustion Flame,  Vol. 49, 1977.

CFD simulation for current seeder design (at test conditions)
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Particle Seeder Hardware

• Constructed from 
#600 class steel 
flanges and Sch. 
80 Pipe

• Maximum 
working pressure 
100 Bar

Seeder Top Flange with Injection Hardware Seeder Assembly
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Improved Particle Seeder
• Particle injection 

concentration is controlled 
via two valves (Main flow 
restrictor and seeder bypass)

• To increase particle injection 
concentration, main loop 
flow is bypassed, so it runs 
through the seeder

• Larger fractions of bypassed 
CO2 flow into the seeder 
lead to higher particle 
concentration

• Enable homogenous particle 
distributions for longer 
durations

Main Loop Flow

Seeder Main Valve

Seeder Flow Exit

Main Flow Restrictor Valve

Seeder Flow 
Bypass Valve



Results – Numerical (Experimental Flow 
Rates)

42

Baseline

Biased Wedge

Inlet Conditions
Flow Rate 0.118 kg/s
Temperature 310K
Pressure 85 Bar

Blade Midspan Velocity Contours



Biased Wedge Performance
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Inlet : 62 m/s Inlet : 80 m/s

Inlet : 90  m/s
Inlet : 98  m/s

Inlet Temperature of  310 K: Temperature (K) Contours at Different Inlet Velocities
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Liquid Phase Evaluation Method – Hardware

• Pipe with welded 
orifice is centered in 
optical domain

• Thermocouples are 
instrumented just 
upstream of orifice exit 
to measure bulk fluid 
temperature

• During testing, the 
pressure vessel heaters 
are used to maintain 
supercritical conditions 
in the main domain, 
regardless of orifice exit 
conditions

CAD assembly of orifice flow test

Converging Nozzle as fabricated
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Liquid Phase Evaluation – Results

Baseline Flow (All Supercritical), Jet temperature ~38C 
Vessel Domain Temperature ~38C

Liquid Jet into Supercritical Vessel
Vessel Domain Temperature ~38C

• Liquid phase pixel intensities >> 5x that of background domain pixel intensity
• Note: small particles in background are residual PIV seed particles
• Sharp interface between liquid and supercritical phases can be seen, and are captured with high spatial resolution

Orifice
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Liquid Phase Evaluation – Results

Liquid Jet into Supercritical Vessel
Vessel Domain Temperature ~38C
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Liquid Phase Evaluation – Binarized 

Liquid Jet into Supercritical Vessel Binarized
Vessel Domain Temperature ~38C

• Note: small particles in background are residual PIV seed particles
• Sharp interface between liquid and supercritical phases can be seen, and are captured with high spatial resolution
• Interface between phases can be visualized through image threshold binarization

Liquid Jet into Supercritical Vessel
Vessel Domain Temperature ~38C
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Liquid Phase Evaluation – Binarized Zoomed 

Liquid Jet into Supercritical Vessel Binarized
Vessel Domain Temperature ~38C

• Note: small particles in background are residual PIV seed particles
• Sharp interface between liquid and supercritical phases can be seen, and are captured with high spatial resolution
• Interface between phases can be visualized through image threshold binarization

Liquid Jet into Supercritical Vessel
Vessel Domain Temperature ~38C
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Liquid Phase Evaluation – Binarized

Liquid Jet into Supercritical Vessel
Vessel Domain Temperature ~38C
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