

Performance and Cost Potential of sCO₂ Bottoming Cycle for Gas Turbines with Carbon Capture – Paper 32

Eric Liese

National Energy Technology Laboratory

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Sandeep Pidaparti^{1,2}; Eric Liese²

¹National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26507, USA ²NETL Support Contractor, 626 Wallace Road, Pittsburgh, PA 15237, USA

Agenda

- Objective and Scope
- Screening Analysis Summary
- Levelized cost of electricity (LCOE) Optimization using FOQUS
- Performance and Economic Comparison
 - Optimized Cases versus Reference Plant (B32B.95 Case from Rev4a Baseline Study)
- Impact of Gas Turbine Exhaust Gas Temperature
- Conclusions and Further Recommendations

• Objective

- Evaluate the performance and cost potential of the indirect sCO₂ power cycle as a bottoming cycle for advanced utility scale gas turbines (H-Class) with CCS
- Minimize LCOE

Scope

- Leveraged previous work which investigated sCO₂ bottoming cycle for F-class gas turbine without capture
- A combined sCO₂ cycle for power and steam generation for capture system reboiler duty

Reference Case

- Case B32B from NETL Rev4A Baseline Study with 95% CO₂ capture[†]. 2-on-1 NGCC
- H-Class gas turbine
- Exhaust gas temperature = 596°C
- Triple-pressure steam reheat cycle power generation
 - Steam turbine inlet temperature = 585°C
- Necessary LP steam for Cansolv system extracted from steam cycle
- Ambient temperature 15°C is assumed

[†]<u>Baseline Studies Overview | netl.doe.gov</u> (https://netl.doe.gov/node/7512)

Screening Analysis Summary

Cycle configuration(s)

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Three sCO₂ power cycle configurations are considered for screening analysis
 - Cascade cycle shown in figure
 - "Modified Brayton" cycle with LT- and HT-Economizers (no LT-Turbine)
 - "Modified Brayton" cycle with LT-Economizer (no LT-Turbine or HT-Economizer)

Screening Analysis – Summary

- Spreadsheet models were used to maximize power output for each of the configuration as a function of flue gas exhaust temperature
- sCO₂ cycles lead to more effective heat recovery from flue gas and sCO₂ turbine exhaust than reference plant (B32B.95 Case)

Flue Gas Exhaust Temperature, °C

ATIONAL

HNOLOGY

LCOE Optimization Using FOQUS

NETL Software FOQUS Used for Optimization

- Final FOQUS model includes four nodes
 - Plant Aspen Plus® model
 - Single model for all the sCO₂ cycle configurations
 - PCHE Aspen Custom models
 - Calculates HTR, LTR size, mass
 - Adiabatic Cooler system Excel model
 - Calculates cooling system aux power, water consumption rate and total cost
 - Midwest ISO ambient conditions
 - Performance/cost template
 - Calculates the plant efficiency and LCOE

Sample Optimization Results

- Objective function:
 - Minimize LCOE
 - No constraints applied
 - Optimization algorithm used: CMA-ES (Evolutionary algorithm)
- Sample results plotted for Modified Brayton (LT-Econ) case
 - Close to 1,000 samples computed for this case
 - HHV plant efficiencies >49.0% possible with higher LCOE

Optimized Design Variables

	Flue gas exhaust temperature = 50.0 °C			
	Design Variables	Modified Brayton (LT-Econ)	Modified Brayton (LT-and HT-Econ)	Cascade Cycle
Turbine inlet temperature	TIT, °C	537.0	563.5	587.1
Cooler outlet temperature	T _{cooler} , °C	18.8	20.6	21.6
Cycle max pressure	P _{max} , MPa	30.1	30.6	27.7
HTR approach temperature	<i>T_{App,HTR},</i> °C	60.0	15.0	13.0
PHX approach temperature	<i>T_{App,PHX},</i> ℃	7.3	9.0	15.0
LTR approach temperature	<i>T_{App,LTR}</i> , [◦] C	6.4	6.8	7.5
LT-Econ approach temperature	$T_{App,LT-Econ}, ^{\circ}C$	2.8	6.2	4.0
HT-Econ heat duty	$Q_{HT-Econ}$, MW	N/A	129.1	215.6
PHX heat duty	Q_{PHX} , MW	470.1	362.9	276.4
HTR total pressure drop	ΔP_{HTR} , bar	3.2	2.9	1.9
LTR total pressure drop	ΔP_{LTR} , bar	1.2	1.2	2.2
Main cooler pressure drop	ΔP_{MC} , bar	0.049	0.045	0.049
Compressor intercooler pressure drop	ΔP_{MCIC} , bar	0.5	1.2	1.1
Flow split fraction to LT turbine	X_{LT}	N/A	N/A	20.6%

Performance and Economic Comparison (Optimized Cases)

Performance Summary

 sCO₂ power cycles have slightly lower plant efficiency

- Feedwater/condensa te pumps are not needed for the sCO₂ power cycles
- Inclusion of valves for off-design operation reduced cycle efficiency slightly
- Modified Brayton cycle with only LT-Economizer offered highest plant efficiency

	B32B95	Modified Brayton	Modified Brayton	Cascade
Performance Summary	Case	(LT-Econ)	(LT-and HT-Econ)	Cycle
Combustion Turbine Power, MWe	686.0	686.0	686.0	686.0
sCO ₂ /Steam Power Cycle, MWe	256.0	245.0	242.0	241.0
Total Gross Power, MWe	942.0	931.0	927.0	926.0
Circulating Water Pumps, kWe	5,570	3,620	3,620	3,620
Combustion Turbine Auxiliaries, kWe	1,320	1,320	1,320	1,320
Condensate Pumps, kWe	200	-	-	_
Cooling Tower Fans, kWe	2,880	1,870	1,870	1,870
Adiabatic Cooling System, kWe	—	2,496	2,501	1,950
CO ₂ Capture/Removal Auxiliaries, kWe	19,200	19,200	19,200	19,200
CO_{2} Compression, kWe	25,130	25,130	25,130	25,130
Feedwater Pumps, kWe	5,760	-	-	_
Ground Water Pumps, kWe	520	430	430	420
Miscellaneous Balance of Plant, kWe	710	710	710	710
SCR, kWe	3	3	3	3
sCO ₂ /Steam Turbine Auxiliaries	230	230	230	230
Transformer Losses, kWe	3,020	2,970	2,960	2,950
Total Auxiliaries, MWe	65	58	58	57
Net Power, MWe	877	873	869	868
Net Plant (HHV) Efficiency (%)	<mark>48.7%</mark>	<mark>48.4%</mark>	<mark>48.2%</mark>	<mark>48.2%</mark>
Combustion Turbine (HHV) Efficiency, %	38.0%	38.0%	38.0%	38.0%
Raw water consumption, gpm/MW _{net}	4.3	3.9	3.8	3.8
Natural Gas Feed Flow, kg/hr (lb/hr)	124,605	124,605	124,605	124,605

- sCO₂ power cycle capital cost is higher than that of steam Rankine cycle
 - HRSG cost lower due to lower overall UA
 - Feedwater and cooling water system costs are lower
- Modified Brayton with only LT-Economizer has lowest CAPEX on \$/kWe basis

Cost Account Description	B32B95 Case	Modified Brayton (LT-Econ)	Modified Brayton (LT-and HT- Econ)	Cascade Cycle			
Capital C	Capital Costs (TPC, \$/1000)						
Feedwater & Miscellaneous BOP	\$139,816	\$117,385	\$117,229	\$116,921			
Flue Gas Cleanup & Piping	\$588,429	\$571,598	\$571,598	\$571,598			
Combustion Turbine & Accessories	\$220,813	\$220,813	\$220,813	\$220,813			
HRSG, Ductwork, & Stack	\$168,537	\$129,104	\$159,527	\$163,872			
Steam/sCO ₂ Turbine & Accessories	\$87,607	\$160,351	\$152,039	\$167,315			
Cooling Water System	\$59,145	\$45,436	\$45,413	\$45,407			
Accessory Electric Plant	\$86,659	\$82,146	\$82,122	\$81,718			
Instrumentation & Control	\$25,072	\$24,672	\$24,671	\$24,635			
Improvement & Site	\$33,192	\$33,009	\$32,951	\$32,927			
Buildings & Structure	\$20,691	\$20,157	\$20,051	\$19,998			
Total	\$1,429,961	\$1,404,649	\$1,426,415	\$1,445,204			
Total, \$/kWe	\$1,630	\$1,610	\$1,641	\$1,665			

sCO₂ Power Cycle Cost Breakdown

- sCO₂ power cycle capital costs are dominated by coolers and recuperators
 - LCOE optimization significantly reduced the CAPEX of these components which might have also reduced the cycle efficiency

Cost Account Description	Modified Brayton (LT-Econ)	Modified Brayton (LT-and HT-Econ)	Cascade Cycle
Capital Costs	<u>(TPC, \$/100</u>	0)	
Main CO ₂ Compressor	\$11,716	\$11,699	\$11,817
High Temperature Recuperator	\$16,047	\$19,206	\$29,929
Low Temperature Recuperator	\$26,719	\$21,061	\$20,261
Adiabatic Coolers	\$77,212	\$70,885	\$73,296
CO ₂ Turbine	\$11,926	\$11,989	\$14,834
Piping System	\$12,703	\$12,703	\$12,703
System Foundations	\$4,543	\$4,496	\$4,475
Total	\$160,351	\$152,039	\$167,315
Total, \$/kWe	\$184	\$175	\$193

- LCOE of modified Brayton cycle (LT-Econ) is 0.5% lower than reference case (B32B.95)
 - Due to lower plant capital costs
- Other two configurations have 0.6 1.4% higher LCOE than the B32B.95 case due to slightly lower efficiencies and higher capital costs

	B32B95 Case	Modified Brayton (LT-Econ)	Modified Brayton (LT-and HT-Econ)	Cascade Cycle
	LCOE (\$/	(MWh)		
Capital	20.6	20.3	20.7	21.0
Fixed O&M	7.0	6.9	7.0	7.1
Variable O&M	3.9	3.8	3.8	3.9
Fuel	31.0	31.1	31.3	31.3
Total (Excluding T&S)	62.4	62.1	62.8	63.3
CO ₂ T&S	3.6	3.6	3.6	3.6
Total (Including T&S)	66.0	65.7	66.4	66.9

Impact of Gas Turbine Exhaust Temperature

Impact of EGT – Performance

 Higher exhaust gas temperature (EGT) leads to higher bottoming cycle efficiency

- The plant efficiency increases by ~1.0 percentage point by increasing EGT from 596.0°C to 629.0°C
- Gas turbine data for EGT = 629.0°C case is taken from GT-PRO for GE 7HA.02

	B32B95	Modified Brayton	Modified Brayton
Performance Summary	Case	(LT-Econ)	(LT-Econ)
	EGT = 596.0°C	EGT = 596.0°C	EGT = 629°C
Combustion Turbine Power, MWe	686.0	686.0	692.0
sCO ₂ /Steam Power Cycle, MWe	256.0	<mark>245.0</mark>	<mark>256.0</mark>
Total Gross Power, MWe	942.0	931.0	948.0
Circulating Water Pumps, kWe	5,570	3,620	3,620
Combustion Turbine Auxiliaries, kWe	1,320	1,320	1,320
Condensate Pumps, kWe	200	-	-
Cooling Tower Fans, kWe	2,880	1,870	1,870
Adiabatic Cooling System, kWe	-	2,496	3,393
CO ₂ Capture/Removal Auxiliaries, kWe	19,200	19,200	19,200
CO_{2} Compression, kWe	25,130	25,130	25,130
Feedwater Pumps, kWe	5,760	-	-
Ground Water Pumps, kWe	520	430	480
Miscellaneous Balance of Plant, kWe	710	710	710
SCR, kWe	3	3	3
sCO ₂ /Steam Turbine Auxiliaries	230	230	230
Transformer Losses, kWe	3,020	2,970	3,020
Total Auxiliaries, MWe	65	58	59
Net Power, MWe	877	873	889
Net Plant (HHV) Efficiency (%)	48.7%	<mark>48.4%</mark>	<mark>49.4%</mark>
Combustion Turbine (HHV) Efficiency, %	38.0%	38.0%	38.4%
Natural Gas Feed Flow, kg/hr (lb/hr)	124,605	124,605	126,432

Impact of EGT – LCOE Breakdown

- LCOE is also lower for higher EGT
 - Impact of higher EGT on steam bottoming cycle is unknown at this point

	B32B95 Case EGT = 596.0°C	Modified Brayton (LT-Econ) EGT = 596.0°C	Modified Brayton (LT-Econ) EGT = 629°C
	LCOE (\$/MW	′h)	
Capital	20.6	20.3	20.0
Fixed O&M	7.0	6.9	6.8
Variable O&M	3.9	3.8	3.8
Fuel	31.0	31.1	31.2
Total (Excluding T&S)	62.4	62.1	61.7
CO ₂ T&S	3.6	3.6	3.5
Total (Including T&S)	66.0	65.7	65.2

Conclusions and Further Recommendations

Conclusions

- For NGCC plants with carbon capture, simpler cycle configurations have lower CAPEX and higher efficiency (while considering CAPEX vs efficiency tradeoffs)
 - Cascade cycles with multiple economizers and turbines might be better suited for plants without CCS (due to need for higher heat recovery)
- Simpler configuration also has a lower sCO_2 turbine inlet temperature
 - Could reduce startup time and material fatigue
- Higher gas turbine exhaust temperature is needed for sCO₂ power cycles to be more attractive both in terms of performance and cost
 - H-class gas turbine selected in this study has an exhaust temperature of 596°C which limits the sCO₂ cycle turbine inlet temperature
 - A duct fired burner could be considered

Further Recommendations

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Generating LP steam for solvent recovery leads to inefficient heat recovery
 - Could high pressure sCO_2 be used as heat source for solvent regeneration?
 - Plan to conduct a thermodynamic evaluation of the concept

This work was performed in support of the U.S. Department of Energy's (DOE) Fossil Energy and Carbon Management's Turbines program and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center's Supercritical CO₂ Field Work Proposal.

QUESTIONS/ COMMENTS

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

CONTACT: Eric Liese Eric.Liese@netl.doe.gov

Extra Slides

Economic Assumptions

- Capital costs for the sCO₂ power cycle components are based on correlations published in 2019 ASME Turbo Expo paper
 - Primary heater costs are based on correlation developed using GT-Pro and vendor data (See next slide)
- Capital cost scaling of the balance-of-plant equipment was conducted using reference capital costs from reference case (B32B.95)
 - Scaling parameters are taken from latest NETL QGESS documents
- Plants are assumed to have a capacity factor of 85%
- Natural gas fuel cost = \$4.42/MMBtu
- Captured CO₂ transportation and storage (T&S) cost is assumed to be \$10/tonne CO₂ (from Midwest to Illinois Basin)
- The Aspen model and Excel templates will be subjected to QA/QC

